博碩士論文 108323034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.133.144.122
姓名 王傑(Jie Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 仿生PDMS薄膜和逐層堆疊多孔PVDF-TrFE微奈米纖維混能感測器應用於動作抽搐識別
(Bionic PDMS membrane and Layer-by-Layer Stacked Porous PVDF-TrFE nano/micro fibers Hybrid Sensor for Motor Tics Recognition)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-9以後開放)
摘要(中) 隨著各種人造電子皮膚和智能貼片等可穿戴電子產品的逐步發展,收集生物力學能量以實現自供電傳感對於實現系統的高效功能和可持續性至關重要。 在本文中,報告了一種植物仿生和柔性混能自供電傳感器(PBHS),將睡蓮微奈米結構圖案轉移到 PDMS 膜表面,獲得具仿生睡蓮表面PDMS薄膜作為摩擦電層,並與逐層堆疊多孔微奈米纖維壓電奈米發電機混能,使感測器能夠增強能量收集特性。 與原來的PVDF-TrFE奈米纖維壓電奈米發電機相比,油改性後的多孔奈米纖維壓電奈米發電機電壓輸出顯著提高了5.7倍,與具有睡蓮微納米結構的PDMS薄膜混能後,電壓輸出又增加了將近2倍。另外,還開發了自供電抽動識別系統,讓醫生或妥瑞兒照顧者可以觀察妥瑞氏症動作抽搐患者的狀態。通過長短期記憶(LSTM)的深度學習模型,整體序列混合訊號識別率達到了88.1%。本研究展示了PBHS的應用,有望為自供電可穿戴電子系統開闢新途徑,為醫療大數據分析帶來巨大機遇。
摘要(英) With the gradual development of various artificial electronic skins and smart patches and other wearable electronic products, the collection of biomechanical energy to achieve self-powered sensing is critical to achieving the efficient function and sustainability of the system. In this work, a study of a novel hybrid sensor fabricated based on piezoelectric and triboelectric design for motor tics recognition will be presented. A plant bionic and flexible hybrid self-powered sensor (PBHS) for motor tics recognition is reported. By combining a bionic polydimethylsiloxane (PDMS) triboelectric nanogenerator and a layered stacked porous polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) nanofiber piezoelectric nanogenerator in mixing through near-field electrospinning (NFES) process on the flexible printed circuit board (FPCB) substrate, this enables the sensor to enhance energy harvesting characteristics. Compared with the original PVDF-TrFE nanogenerator, the voltage output performance is improved by nearly 200%. Furthermore, a self-powered tics recognition system has been developed through deep learning to provide doctors to observe the status of patients with motor tics of Tourette syndrome. By using the deep learning model of long short-term memory (LSTM) of a type of recurrent neural network (RNN), the overall sequences hybrid signal recognition rate for tic recognition has been achieved to 88.1%.
關鍵字(中) ★ 植物仿生混能自供電感測器(PBHS)
★ 近場電紡織技術
★ 逐層堆疊多孔PVDF-TrFE微奈米纖維
★ 深度學習
★ 動作抽搐識別
關鍵字(英) ★ Plant bionic hybrid self-powered sensor (PBHS)
★ Near field electrospinning (NFES)
★ Layer-by-layer staked Porous PVDF-TrFE nano/micro fibers
★ Deep learning LSTM model
★ Motor Tics Recognition
論文目次 摘要 I
Abstract II
致 謝 III
目錄 V
圖表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 壓電效應 4
2.1.1 正壓電效應 (Direct piezoelectric effect) 4
2.1.2 逆壓電效應 (Converse piezoelectric effect) 5
2.2 壓電材料 7
2.2.1 壓電材料種類 7
2.2.2 壓電材料操作模式 8
2.3 聚偏二氟乙烯PVDF 9
2.4 近場電紡織 11
2.4.1 近場電紡織技術背景 11
2.4.2 近場電紡織技術原理 11
2.5摩擦電效應 14
2.6 奈米發電機 16
2.6.1 壓電奈米發電機(piezoelectric nanogenerator) 16
2.6.1 摩擦電奈米發電機(triboelectric nanogenerator) 17
2.7 機器學習 18
第三章 仿生PDMS薄膜和逐層堆疊多孔 PVDF-TrFE 微奈米纖維混能 感測器應用於動作抽搐識別 20
3.1 導論 20
3.2 實驗方法及步驟 20
3.2.1 電紡絲製作方法及材料 20
3.2.2 量測設備及應用 22
3.3 結果與討論 23
3.4 補充資料 48
3.4.1 XY移動平台路徑規劃 48
3.4.2 LSTM模型設計 49
第四章 結論 53
參 考 文 獻 54
實 驗 儀 器 59
參考文獻 參 考 文 獻
1 Zhang, Yuanzheng, et al. "Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self‐powered mechanosensational system." Advanced Functional Materials 29.42 (2019): 1904259.
2 Lee, Uichin, et al. "Intelligent positive computing with mobile, wearable, and IoT devices: Literature review and research directions." Ad Hoc Networks 83 (2019): 8-24.
3 Al-Turjman, Fadi. "5G-enabled devices and smart-spaces in social-IoT: an overview." Future Generation Computer Systems 92 (2019): 732-744.
4 Chen, Chong, et al. "Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators." Composites Science and Technology 192 (2020): 108100.
5 Zhu, Guang, et al. "Radial-arrayed rotary electrification for high performance triboelectric generator." Nature communications 5.1 (2014): 1-9.
6 Zhu, Guang, et al. "Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification." Nano letters 14.6 (2014): 3208-3213.
7 Fan, Feng-Ru, Zhong-Qun Tian, and Zhong Lin Wang. "Flexible triboelectric generator." Nano energy 1.2 (2012): 328-334.
8 Xu, Cheng, et al. "On the electron‐transfer mechanism in the contact‐electrification effect." Advanced Materials 30.15 (2018): 1706790.
9 Yang, Jin, et al. "Broadband vibrational energy harvesting based on a triboelectric nanogenerator." Advanced Energy Materials 4.6 (2014): 1301322.
10 Chen, Jun, et al. "Micro-cable structured textile for simultaneously harvesting solar and mechanical energy." Nature Energy 1.10 (2016): 1-8.
11 Yang, Jin, et al. "Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing." ACS nano 8.3 (2014): 2649-2657.
12 Niu, Simiao, et al. "A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics." Nature communications 6.1 (2015): 1-8.
13 Lin, Zhiming, et al. "Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring." ACS nano 11.9 (2017): 8830-8837.
14 Han, Mengdi, et al. "r-Shaped hybrid nanogenerator with enhanced piezoelectricity." ACS nano 7.10 (2013): 8554-8560.
15 Chen, Song, et al. "Quantifying energy harvested from contact‐mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units." Advanced Energy Materials 7.5 (2017): 1601569.
16 Jung, Woo-Suk, et al. "High output piezo/triboelectric hybrid generator." Scientific reports 5.1 (2015): 1-6.
17 Wen, Zhen, et al. "Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator." ACS nano 10.7 (2016): 6526-6534.
18 Liu, Yuqiang, et al. "Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops." ACS nano 12.3 (2018): 2893-2899.
19 Zi, Yunlong, et al. "Triboelectric–pyroelectric–piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing." Advanced Materials 27.14 (2015): 2340-2347.
20 Malhi, Karandeep, et al. "A zigbee-based wearable physiological parameters monitoring system." IEEE sensors journal 12.3 (2010): 423-430.
21 Edwards, John. "Wireless sensors relay medical insight to patients and caregivers [special reports]." IEEE Signal Processing Magazine 29.3 (2012): 8-12.
22 Castillejo, Pedro, et al. "Integration of wearable devices in a wireless sensor network for an E-health application." IEEE Wireless Communications 20.4 (2013): 38-49.
23 Curie, Jacques, and Pierre Curie. "Développement par compression de l′électricité polaire dans les cristaux hémièdres à faces inclinées." Bulletin de minéralogie 3.4 (1880): 90-93.
24 Birkholz, Mario. "Crystal-field induced dipoles in heteropolar crystals II: Physical significance." Zeitschrift für Physik B Condensed Matter 96.3 (1995): 333-340.
25 Curie, Jacques, and Pierre Curie. "Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées." Compt. Rend 93 (1881): 1137-1140.
26 Krautkrämer, Josef, and Herbert Krautkrämer. "Ultrasonic testing by determination of material properties." Ultrasonic Testing of Materials. Springer, Berlin, Heidelberg, 1990. 528-550.
27 Damjanovic, Dragan. "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics." Reports on Progress in Physics 61.9 (1998): 1267.
28 Sappati, Kiran Kumar, and Sharmistha Bhadra. "Piezoelectric polymer and paper substrates: a review." Sensors 18.11 (2018): 3605.
29 Heywang, Walter, Karl Lubitz, and Wolfram Wersing, eds. Piezoelectricity: evolution and future of a technology. Vol. 114. Springer Science & Business Media, 2008.
30 Zhang, Q. M., Vivek Bharti, and George Kavarnos. "Poly (vinylidene fluoride)(PVDF) and its copolymers." Encyclopedia of smart materials (2002).
31 Omote, Kenji, Hiroji Ohigashi, and Keiko Koga. "Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’films of vinylidene fluoride trifluoroethylene copolymer." Journal of applied physics 81.6 (1997): 2760-2769.
32 Kawai, Heiji. "The piezoelectricity of poly (vinylidene fluoride)." Japanese journal of applied physics 8.7 (1969): 975.
33 Nix, E. L., and I. M. Ward. "The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride." Ferroelectrics 67.1 (1986): 137-141.
34 Rayleigh, Lord. "XX. On the equilibrium of liquid conducting masses charged with electricity." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 14.87 (1882): 184-186.
35 Kameoka, Jun, and Harold G. Craighead. "Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning." Applied Physics Letters 83.2 (2003): 371-373.
36 Kameoka, Jun, et al. "A scanning tip electrospinning source for deposition of oriented nanofibres." Nanotechnology 14.10 (2003): 1124.
37 Sill, Travis J., and Horst A. Von Recum. "Electrospinning: applications in drug delivery and tissue engineering." Biomaterials 29.13 (2008): 1989-2006.
38 Lee, Seungsin, and S. Kay Obendorf. "Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration." Textile research journal 77.9 (2007): 696-702.
39 Sun, Daoheng, et al. "Near-field electrospinning." Nano letters 6.4 (2006): 839-842.
40 Subbiah, Thandavamoorthy, et al. "Electrospinning of nanofibers." Journal of applied polymer science 96.2 (2005): 557-569.
41 Taylor, Geoffrey Ingram. "Electrically driven jets." Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 313.1515 (1969): 453-475.
42 Boland, Eugene D., et al. "Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning." Journal of Macromolecular Science, Part A 38.12 (2001): 1231-1243.
43 Zheng, Gao Feng, et al. "Deposition characteristics of direct-write suspended micro/nano-structures." Advanced Materials Research. Vol. 60. Trans Tech Publications Ltd, 2009.
44 Wang, Zhong Lin, and Jinhui Song. "Piezoelectric nanogenerators based on zinc oxide nanowire arrays." Science 312.5771 (2006): 242-246.
45 Yang, Rusen, et al. "Power generation with laterally packaged piezoelectric fine wires." Nature nanotechnology 4.1 (2009): 34-39.
46 Fan, Feng-Ru, Zhong-Qun Tian, and Zhong Lin Wang. "Flexible triboelectric generator." Nano energy 1.2 (2012): 328-334.
47 Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.
48 Norvig, P. Russel, and S. Artificial Intelligence. A modern approach. Upper Saddle River, NJ, USA:: Prentice Hall, 2002.
49 Van Otterlo, Martijn, and Marco Wiering. "Reinforcement learning and markov decision processes." Reinforcement learning. Springer, Berlin, Heidelberg, 2012. 3-42.
50 Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural networks 61 (2015): 85-117.
51 LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning. nature 521 (7553), 436-444." Google Scholar Google Scholar Cross Ref Cross Ref (2015).
52 Graves, Alex, et al. "A novel connectionist system for unconstrained handwriting recognition." IEEE transactions on pattern analysis and machine intelligence 31.5 (2008): 855-868.
53 Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.
54 Graves, Alex, et al. "A novel connectionist system for unconstrained handwriting recognition." IEEE transactions on pattern analysis and machine intelligence 31.5 (2008): 855-868.
55 Graves, Alex, and Jürgen Schmidhuber. "Framewise phoneme classification with bidirectional LSTM and other neural network architectures." Neural networks 18.5-6 (2005): 602-610.
56 Mayer, Hermann, et al. "A system for robotic heart surgery that learns to tie knots using recurrent neural networks." Advanced Robotics 22.13-14 (2008): 1521-1537.
57 Yu, Bin, et al. "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density." Nano Energy 48 (2018): 464-470.
58 Meng, Nan, et al. "Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties." Journal of Materials Chemistry C 5.13 (2017): 3296-3305.
59 Jankovic, Joseph. "Tourette′s syndrome." New England Journal of Medicine 345.16 (2001): 1184-1192.
60 Zhao, Zheng, et al. "LSTM network: a deep learning approach for short-term traffic forecast." IET Intelligent Transport Systems 11.2 (2017): 68-75.
61 Bi, Jing, et al. "Deep neural networks for predicting task time series in cloud computing systems." 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2019.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2021-9-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明