參考文獻 |
Aghbolaghy, M., Soltan, J., Chen, N., 2017. Role of surface carboxylates in the gas phase ozone-assisted catalytic oxidation of toluene. Catalysis Letters 147, 2421-2433.
Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmospheric environment 34, 2063-2101.
Cao, R., Zhang, P., Liu, Y., Zheng, X., 2019. Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition. Applied Surface Science 495.
Chen, B., Shi, C., Crocker, M., Wang, Y., Zhu, A., 2013. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Applied Catalysis B: Environmental 132-133, 245-255.
Chen, B., Zhu, X., Crocker, M., Wang, Y., Shi, C., 2014. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Applied Catalysis B: Environmental 154-155, 73-81.
Chen, S., Yan, Q., Zhang, C., Wang, Q., 2019. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR. Catalysis Today 327, 81-89.
Chen, Z., Wang, F., Li, H., Yang, Q., Wang, L., Li, X., 2011. Low-temperature selective catalytic reduction of NOx with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Industrial & Engineering Chemistry Research 51, 202-212.
Cho, S., Kim, K., Park, M., Lee, K., Choi, J., 2009. Ventilation performance by the concentration change of HCHO and TVOC with three models of two ventilation systems and one natural condition. Journal of Asian Architecture and Building Engineering.
Cui, W., Xue, D., Yuan, X., Zheng, B., Jia, M., Zhang, W., 2017. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Applied Surface Science 411, 105-112.
Daniells, S., Overweg, A., Makkee, M., Moulijn, J., 2005. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study. Journal of Catalysis 230, 52-65.
Du, H., Han, Z., Wang, Q., Gao, Y., Gao, C., Dong, J., Pan, X., 2020. Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environmental Science and Pollution Research 27, 40870-40881.
Einaga, H., Futamura, S., 2006. Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides. Journal of Catalysis 243, 446-450.
Gong, S., Chen, J., Wu, X., Han, N., Chen, Y., 2018a. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catalysis Communications 106, 25-29.
Gong, S., Wang, A., Wang, Y., Liu, H., Han, N., Chen, Y., 2019a. Heterostructured Ni/NiO nanocatalysts for ozone decomposition. ACS Applied Nano Materials 3, 597-607.
Gong, S., Wang, A., Zhang, J., Guan, J., Han, N., Chen, Y., 2020. Gram-scale synthesis of ultra-fine Cu2O for highly efficient ozone decomposition. RSC Advances 10, 5212-5219.
Gong, S., Wu, X., Zhang, J., Han, N., Chen, Y., 2018b. Facile solution synthesis of Cu2O–CuO–Cu(OH)2 hierarchical nanostructures for effective catalytic ozone decomposition. CrystEngComm 20, 3096-3104.
Gong, S., Xie, Z., Li, W., Wu, X., Han, N., Chen, Y., 2019b. Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Applied Catalysis B: Environmental 241, 578-587.
Greiner, M.T., Helander, M.G., Wang, Z., Tang, W., Lu, Z., 2010. Effects of processing conditions on the work function and energy-level alignment of NiO thin films. The Journal of Physical Chemistry C 114, 19777-19781.
Guillemot, M., Mijoin, J., Mignard, S., Magnoux, P., 2007. Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system. Applied Catalysis B: Environmental 75, 249-255.
Haruta, M., Ueda, A., Tsubota, S., Sanchez, R.T., 1996. Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts. Catalysis Today 29, 443-447.
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., 1989. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis 115, 301-309.
Huang, B., Saka, S., 2003. Photocatalytic activity of TiO2 crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde. Journal of Wood Science 49, 0079-0085.
Huang, Q., Yan, X., Li, B., Chen, Y., Zhu, S., Shen, S., 2013. Photocatalytic decomposition of gaseous HCHO by N-Zr-TiO2 catalysts, Advanced Materials Research. Trans Tech Publ, pp. 44-49.
Hutchings, G.J., Hall, M.S., Carley, A.F., Landon, P., Solsona, B.E., Kiely, C.J., Herzing, A., Makkee, M., Moulijn, J.A., Overweg, A., 2006. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis 242, 71-81.
Jia, J., Zhang, P., Chen, L., 2016. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Applied Catalysis B: Environmental 189, 210-218.
Kim, K., Jeong, M.I., Lee, D., Song, J., Kim, H., Yoo, E., Jeong, S., Han, S., 2010. Variation in formaldehyde removal efficiency among indoor plant species. American Society for Horticultural Science.
Kim, M., Park, E., Jurng, J., 2018. Oxidation of gaseous formaldehyde with ozone over MnOx/TiO2 catalysts at room temperature (25°C). Powder Technology 325, 368-372.
Kondo, T., Morikawa, Y., Hayashi, N., Kitamoto, N., 2002. Purification and characterization of formate oxidase from a formaldehyde-resistant fungus. FEMS microbiology letters 214, 137-142.
Li, C., Shen, Y., Jia, M., Sheng, S., Adebajo, M.O., Zhu, H., 2008. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Catalysis Communications 9, 355-361.
Li, D., Yang, G., Li, P., Wang, J., Zhang, P., 2016. Promotion of formaldehyde oxidation over Ag catalyst by Fe doped MnOx support at room temperature. Catalysis Today 277, 257-265.
Li, J., Pan, K., Yu, S., Yan, S., Chang, M., 2014. Removal of formaldehyde over MnxCe(1-x)O2 catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Journal of Environmental Science (China) 26, 2546-2553.
Li, J., Yu, E., Cai, S., Chen, X., Chen, J., Jia, H., Xu, Y., 2019. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Applied Catalysis B: Environmental 240, 141-152.
Li, X., Ma, J., He, H., 2020. Recent advances in catalytic decomposition of ozone. Journal of Environmental Science (China) 94, 14-31.
Liu, Y., Zhang, P., Zhan, J., Liu, L., 2019. Heat treatment of MnCO3: An easy way to obtain efficient and stable MnO2 for humid O3 decomposition. Applied Surface Science 463, 374-385.
Lu, L., Tian, H., He, J., Yang, Q., 2016. Graphene–MnO2 hybrid nanostructure as a eew catalyst for formaldehyde oxidation. The Journal of Physical Chemistry C 120, 23660-23668.
Ma, J., Li, X., Zhang, C., Ma, Q., He, H., 2020. Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone. Applied Catalysis B: Environmental 264.
Miao, L., Wang, J., Zhang, P., 2019. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Applied Surface Science 466, 441-453.
Nie, L., Yu, J., Li, X., Cheng, B., Liu, G., Jaroniec, M., 2013. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environmental science & technology 47, 2777-2783.
Oyama, S.T., 2000. Chemical and catalytic properties of ozone. Catalysis Reviews 42, 279-322.
Photong, S., Boonamnuayvitaya, V., 2009. Preparation and characterization of amine-functionalized SiO2/TiO2 films for formaldehyde degradation. Applied Surface Science 255, 9311-9315.
Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., Zhang, T., 2011. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature chemistry 3, 634-641.
Quiroz, J., Giraudon, J., Gervasini, A., Dujardin, C., Lancelot, C., Trentesaux, M., Lamonier, J., 2015. Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment. ACS Catalysis 5, 2260-2269.
Radmilovic, V., Gasteiger, H., Ross, P., 1995. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J. Catal. 154, 98-106.
Reed, C., Lee, Y., Oyama, S.T., 2006. Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone. The Journal of Physical Chemistry B 110, 4207-4216.
Rong, H., Ryu, Z., Zheng, J., Zhang, Y., 2003. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde. Journal of colloid and interface science 261, 207-212.
S. Pekárek, J. Mikeš, Krýsa., J., 2015. Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General 502, 122-128.
Schmitz, H., Hilgers, U., Weidner, M., 2009. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytologist Trust.
Song, Z., Wang, B., Yang, W., Chen, T., Ma, C., Sun, L., 2020. Simultaneous removal of NO and SO2 through heterogeneous catalytic oxidation-absorption process using magnetic Fe2.5M0.5O4 (M = Fe, Mn, Ti and Cu) catalysts with vaporized H2O2. Chemical Engineering Journal 386.
Sun, Y., Li, N., Xing, X., Zhang, X., Zhang, Z., Wang, G., Cheng, J., Hao, Z., 2019. Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides. Catalysis Today 327, 389-397.
Tang, W., Liu, H., Wu, X., Chen, Y., 2014. Higher oxidation state responsible for ozone decomposition at room temperature over manganese and cobalt oxides: effect of calcination temperature. Ozone: Science & Engineering 36, 502-512.
Tang, X., Chen, J., Huang, X., Xu, Y., Shen, W., 2008. Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Applied Catalysis B: Environmental 81, 115-121.
Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J., Shen, W., 2006. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Applied Catalysis B: Environmental 62, 265-273.
Tao, L., Zhao, G., Chen, P., Zhang, Z., Liu, Y., Lu, Y., 2019. High-performance Co-MnOx composite oxide catalyst structured onto Al-fiber felt for high-throughput O3 decomposition. ChemCatChem 11, 1131-1142.
Trovarelli, A., 2002. Catalysis by ceria and related materials. World Scientific.
Vannice, M.A., 2007. An analysis of the Mars–van Krevelen rate expression. Catalysis Today 123, 18-22.
Wang, C., Ma, J., Liu, F., He, H., Zhang, R., 2015a. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. The Journal of Physical Chemistry C 119, 23119-23126.
Wang, C., Ma, J., Liu, F., He, H., Zhang, R., 2015b. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. The Journal of Physical Chemistry C 119, 23119-23126.
Wang, H., Huang, Z., Jiang, Z., Jiang, Z., Zhang, Y., Zhang, Z., Shangguan, W., 2018. Trifunctional C@MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catalysis 8, 3164-3180.
Wang, H., Ning, P., Zhang, Y., Ma, Y., Wang, J., Wang, L., Zhang, Q., 2020a. Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR. Journal of hazardous materials 388, 121812.
Wang, J., Li, D., Li, P., Zhang, P., Xu, Q., Yu, J., 2015c. Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations. RSC Advances 5, 100434-100442.
Wang, J., Nie, Z., An, Z., Bai, H., Wang, F., Zhang, X., Li, Y., Wang, C., 2019. Improvement of SO2 Resistance of Low-Temperature Mn-Based Denitration Catalysts by Fe Doping. ACS Omega 4, 3755-3760.
Wang, J., Zhang, P., Li, J., Jiang, C., Yunus, R., Kim, J., 2015d. Room-temperature oxidation of formaldehyde by layered manganese oxide: effect of water. Environmental science & technology 49, 12372-12379.
Wang, Y., Wang, G., Deng, W., Han, J., Qin, L., Zhao, B., Guo, L., Xing, F., 2020b. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion. Chemical Engineering Journal 395.
Xu, H., Fu, Q., Yao, Y., Bao, X., 2012. Highly active Pt–Fe bicomponent catalysts for CO oxidation in the presence and absence of H2. Energy & Environmental Science 5, 6313-6320.
Yu, Y., Ji, J., Li, K., Huang, H., Shrestha, R.P., Kim Oanh, N.T., Winijkul, E., Deng, J., 2020. Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catalysis Today 355, 573-579.
Zhang, C., He, H., Tanaka, K.-i., 2006. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental 65, 37-43.
Zhang, C., Liu, F., Zhai, Y., Ariga, H., Yi, N., Liu, Y., Asakura, K., Flytzani Stephanopoulos, M., He, H., 2012. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angewandte Chemie International Edition 51, 9628-9632.
Zhang, M., Li, C., Qu, L., Fu, M., Zeng, G., Fan, C., Ma, J., Zhan, F., 2014. Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study. Applied Surface Science 300, 58-65.
Zhang, Y., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W., Einaga, H., 2019. Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catalysis Today 327, 323-333.
Zhao, D., Ding, T., Li, X., Liu, J., Shi, C., Zhu, A., 2012a. Ozone catalytic oxidation of HCHO in air over MnOx at room temperature. Chinese Journal of Catalysis 33, 396-401.
Zhao, D., Li, X., Shi, C., Fan, H., Zhu, A., 2011. Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process. Chemical Engineering Science 66, 3922-3929.
Zhao, D., Shi, C., Li, X., Zhu, A., Jang, B., 2012b. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of hazardous materials 239-240, 362-369.
Zhu, B., Li, X., Sun, P., Liu, J., Ma, X., Zhu, X., Zhu, A., 2017a. A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis 38, 1759-1769.
Zhu, G., Zhu, J., Jiang, W., Zhang, Z., Wang, J., Zhu, Y., Zhang, Q., 2017b. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Applied Catalysis B: Environmental 209, 729-737.
Zhu, G., Zhu, J., Li, W., Yao, W., Zong, R., Zhu, Y., Zhang, Q., 2018. Tuning the K+ concentration in the tunnels of alpha-MnO2 to increase the content of oxygen vacancy for ozone elimination. Environmental science & technology 52, 8684-8692.
Zhu, L., Wang, J., Rong, S., Wang, H., Zhang, P., 2017c. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Applied Catalysis B: Environmental 211, 212-221.
中華民國衛生福利部國民健康署,2020年報.
梁煜申,鈀觸媒處理焚化廢氣中 CO、NO 之動力研究,國立中興大學環境工程研究所碩士論文,台灣 (2003)。 |