博碩士論文 108322051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.148.106.31
姓名 吳明福(Ming-Fu Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高完整性盛裝容器用活性粉混凝土配比及工程性質試驗研究
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在多重障壁設計概念中,高完整性盛裝容器之服務年限需長達數百年之久,考量未來國內低放射性廢棄物最終處置場之廠址可能位於濱海區域,高完整性盛裝容器長期處於此環境下,對混凝土所造成之劣化與耐久性的影響相當顯著。
本研究延續先前研究團隊以活性粉混凝土製作低放射性廢棄物盛裝容器之配比參數、以振動60秒方式製作試體及利用90℃熱水養護一天。為提升活性粉混凝土運用於盛裝容器之工程性質及容器品質,首先針對石英砂含量及鋼纖維含量進行參數調整,決定參數最佳添加量之後,再降低水膠比,並分別進行抗壓強度、彈性模數、抗彎強度、直接拉力、劈裂強度和耐衝擊等硬固性質試驗,以及孔隙率、表面電阻率、超音波波速和乾燥收縮等耐久性質試驗。而試驗結果顯示,石英砂含量及鋼纖維含量分別於1.2及2.0%之耐久性質表現較為優異,水膠比則降低至0.18具有良好的硬固及耐久性質,為三組配比(W/B = 0.20、0.18及0.16)中的最佳化配比,並將最佳配比之各項試驗結果與國內外盛裝容器參考標準及規範進行比較皆符合要求標準值,顯示活性粉混凝土配比運用於高完整性盛裝容器上的潛力。
採用超音波波速試驗進行耐久性質檢測,此為非破壞性檢測方式,為提供後續盛裝容器檢測,與表面電阻率和孔隙率進行迴歸分析呈現高度相關性,顯示超音波波速能作為日後盛裝容器檢驗方法之一;將直接拉力強度及抗彎強度兩者與劈裂強度進行迴歸分析也呈現高度相關性,因此可透過劈裂試驗作為簡易快速評估活性粉混凝土之抗裂能力。
摘要(英) The low-radioactive waste container concrete is different from the general concrete and must be considered for a longer period of durability.
This research continues the previous research team using reactive powder concrete to make low-level radioactive waste containers with mixing parameters, vibrating for 60 seconds to make specimens, and curing with hot water at 90℃ for one day. To improve the engineering properties and container quality of the reactive powder concrete used in the container, the parameters of the silica sand content and the steel fiber content are first adjusted, and the optimal addition amount of the parameters is determined, then the water-binder ratio is reduced, and the hardness tests such as compressive strength, elastic modulus, bending strength, direct tension, splitting strength, and impact resistance, as well as durability tests such as porosity, surface resistivity, ultrasonic pulse velocity, and drying shrinkage. The test results show that the silica sand and steel fiber content performed better at 1.2 and 2.0%, respectively, and the water-to-binder ratio was reduced to 0.18 to achieve the optimal ratio, showing the potential of the reactive powder concrete ratio to be used in high-integrity containers.
Ultrasonic pulse velocity test is used for durability quality inspection. To provide subsequent container inspection, it is highly correlated with surface resistivity and porosity in regression analysis, showing that ultrasonic pulse velocity can be used as a future container inspection as one of the methods. Regression analysis of both the direct tensile strength and the flexural strength and the splitting strength also shows a high correlation., so the splitting test can be used to evaluate the crack resistance of reactive powder concrete.
關鍵字(中) ★ 高完整性盛裝容器
★ 活性粉混凝土
★ 直接拉力強度
★ 超音波波速
關鍵字(英) ★ Highly Integrated Container
★ Reactive Powder Concrete
★ Direct Tensile Strength
★ Ultrasonic Pulse Velocity
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 XIII
表目錄 XXI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究內容 2
第二章 文獻回顧 4
2.1 低放射性廢棄物 4
2.1.1 低放射性廢棄物來源 4
2.1.2 低放射性廢棄物分類與處置 5
2.2 低放射性廢棄物最終處置場概述 7
2.2.1 國外低放射性廢棄物最終處置設施案例 9
2.2.2 國內低放射性廢棄物最終處置設施案例 18
2.3 高完整性盛裝容器用混凝土 20
2.3.1 國際原子能總署 20
2.3.2 法國 21
2.3.3 美國 24
2.3.4 斯洛伐克 25
2.3.5 日本 27
2.3.6 臺灣 28
2.3.7 中國 30
2.4 活性粉混凝土 31
2.4.1 基本設計原理 31
2.4.2 活性粉混凝土材料運用參數 33
2.4.3 添加材料對混凝土性質之影響 34
2.5 影響抗壓強度之因素 40
2.6 鋼纖維含量對劈裂強度之影響 42
2.7 影響抗彎強度之因素 44
2.8 添加鋼纖維對抗拉強度之影響 47
2.9 添加鋼纖維對表面電阻率之影響 50
2.10 影響孔隙率之因素 51
2.11 影響乾燥收縮之因素 53
2.12 影響超音波波速之因素 54
2.13 影響耐衝擊試驗之因素 55
第三章 實驗材料與規劃 59
3.1 實驗材料 59
3.2 實驗設備 65
3.3 實驗內容及方法 75
3.3.1 實驗流程 75
3.3.2 實驗變數 79
3.3.3 實驗方法 81
第四章 配比參數實驗結果與分析 94
4.1 石英砂添加比例 94
4.1.1 流度試驗 94
4.1.2 抗壓強度試驗 96
4.1.3 孔隙率試驗 97
4.1.4 表面電阻率試驗 98
4.1.5 超音波波速試驗 100
4.2 鋼纖維添加比例 104
4.2.1 流度試驗 104
4.2.2 抗壓強度試驗 105
4.2.3 劈裂強度試驗 106
4.2.4 抗彎強度試驗 107
4.2.5 直接拉力試驗 109
4.2.6 耐衝擊試驗 111
4.2.7 孔隙率試驗 114
4.2.8 表面電阻率試驗 115
4.2.9 超音波波速試驗 117
4.2.10 乾燥收縮試驗 119
第五章 盛裝容器配比研發及品質提升之成效 121
5.1 流度試驗 121
5.2 抗壓強度試驗 122
5.3 彈性模數試驗 125
5.4 劈裂強度試驗 126
5.5 耐衝擊試驗 128
5.6 孔隙率試驗 130
5.7 表面電阻率試驗 131
5.8 超音波波速試驗 133
5.9 乾燥收縮試驗 135
5.10 綜合成效分析 136
5.10.1 抗壓強度統計分析 136
5.10.2 硬固性質試驗之迴歸分析 138
5.10.3 耐久性質試驗之迴歸分析 140
第六章 結論與建議 143
6.1 結論 143
6.2 建議 144
參考文獻 145
參考文獻 台灣電力公司:http://www.taipower.com.tw/
行政院原子能委員會:http://www.aec.gov.tw/
經濟部低放射性廢棄物最終處置:http://www.llwfd.org.tw/
德國聯邦放射性廢棄物機關(BGE):https://www.bge.de/en/
科學人雜誌:https://sa.ylib.com/index.aspx
台灣電力公司,「低放射性廢棄物最終處置技術評估報告(精簡版)」,台北市(2017)
行政院原子能委員會,「核廢料最終處置技術及世界各國高、低放最終處置場址選擇與興建近況報告」,新北市(2019)
陳智隆,「低放射性廢棄物盛裝容器審查導則研究」,行政院原子能委員會放射性物料管理局(2012)
黃兆龍,「高完整性承裝容器製程自動化研究」,行政院原子能委員會(2006-2008)
黃慶村,「低放射性廢料高完整性盛裝容器(HIC)品質及檢驗規範之研擬」,行政院原子能委員會(2000)
李騰芳、徐力平、廖淑萍、姚錫齡,「活性粉混凝土(RPC)應用之探討」,現代營建,土木技術第二卷,第十期,第108-117頁(1999)
馬齊文,「粉體組成對活性粉混凝土微巨觀力學性質之影響與高分子改質之效益」,博士論文,國立台灣大學土木工程學研究所,臺北(2005)
何曜宇,「活性粉混凝土破壞行為之研究」,碩士論文,國立台灣大學土木工程學研究所,臺北(2000)
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士學位論文,國立台灣科技大學營建工程系,臺北(2006)
陳俊村,「黃氏富勒緻密配比設計法於鋼纖維混凝土枕材料設計應用之研究」,碩士學位論文,國立台灣科技大學營建工程系,臺北(2006)
顏兆國,「以活性粉混凝土製作低放廢棄物盛裝容器配比研究」,碩士論文,國立中央大學土木工程研究所,中壢(2020)
葉佳煊,「熱養護混凝土應用於低放射性廢棄物盛裝容器之障壁功能試驗評估」,碩士論文,國立中央大學土木工程研究所,中壢(2019)
鍾添平,「添加鋼纖維與矽灰對水泥基複合材料力學性質影響之探討」,碩士學位論文,國立台灣海洋大學河海工程學系,基隆(2007)
生態環境部國家市場監督管理總局,「低、中水平放射性廢物高完整性容器—混凝土容器」,GB36900.2,中國(2018)
東京電力ホールディングス株式会社(TEPCO):https://www.tepco.co.jp/index-j.html
ASTM C39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
ASTM C78 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).
ASTM C157 Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete.
ASTM C469 Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression.
ASTM C490 Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete.
ASTM C496 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
ASTM C596-18 Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement.
ASTM C597 Standard Test Method for Pulse Velocity Through Concrete.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
ASTM C1609 Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading).
ASTM C1856 Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete.
AASHTO T358-15 Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.
ACI-544 2R89.
Abbas, S., Soliman, A. M., and Nehdi, M. L. (2015). “Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages.” Construction and Building Materials, Vol. 75, pp. 429-441.
Abbass, W., Khan, M. I., and Mourad S. (2018). “Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete.” Construction and Building Materials, Vol. 168, pp. 556-569.
Bektimirova, U., Shon, C. S., Zhang, D., Sharafutdinov, E., and Kim, J. R. (2018). “Proportioning and characterization of reactive powder concrete for an energy storage pile application.” Applied Sciences, 2507, pp. 1-21.
Dalvand, A., and Ahmadi, M. (2021). “Impact failure mechanism and mechanical characteristics of steel fiber reinforced self-compacting cementitious composites containing silica fume.” Engineering Science and Technology, an International Journal 24, pp. 736-748.
Frazao, C., Camoes, A., Barros, J., and Goncalves, D. (2015). “Durability of steel fiber reinforced self-compacting concrete.” Construction and Building Materials, Vol. 80, pp. 155-166.
Gesoğlu, M., Güneyisi, E., Muhyaddin, G. F., Asaad, D. S., and Yılmaz, M. E. (2016). “Strain hardening ultra-high performance fiber reinforced cementitious composites:Effect of fiber type and concentration.” Composites Part B.
Hudoba, I. (2007). “Utilization of concrete as a construction material in the concept of Radioactive Waste Storage in Slovak Republic.” mimoriadne číslo, Vol. 12, pp. 157-161.
Hassan, A. M. T., Jones, S. W., and Mahmud, G. H. (2012). “Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC).” Construction and Building Materials, Vol. 37, pp. 874-882.
He, S. S., Wang, L. M., Zhang, L. M., and Shi, Z. W. (2018). “Influence of Water-binder Ratio on the Microstructure of Airentrained Concrete.” Materials Science and Engineering, 392.
IAEA (2009). “Regulations for the Safe Transport of Radioactive Material.” IAEA Safety Standards Series No.TS-R-1, pp. 105-116
Jooss, M., and Reinhardt, H. W. (2002). “Permeability and Diffusivity of Concrete as Function of Temperature.” Cement and Concrete Research, Vol. 32, pp. 1497-1504.
Kang, S. T., Lee, B. Y., Kim, J. K., and Kim, Y. Y. (2011). “The effect of fibre distribution characteristics on the flexural strength of steel fibre reinforced ultra high strength concrete.” Construction and Building Materials, pp. 2450-2457.
LLWR (2011). “The 2011 Environmental Safety Case-Main Report.” U.K., R(11)10016, pp. 16-19.
Mostofinejad, D., Nikoo, M. R., and Hosseini, S. A. (2016). “Determination of optimized mix design and curing conditions of reactive powder concrete (RPC).” Construction and Building Materials, Vol. 123, pp. 754-767.
Pech, R. (1992). “Fiber concrete overpacks/physico chemical characteristics: cement and fiber characterization.” Cement and Concrete Research, Vol. 22, pp. 351-358.
Richard, P., and Cheyrezy, M. (1994). “Reactive powder concretes with high ductility and 200-800 MPa compressive strength.” ACI Spring convention, San Francisco, April 1994.
Richard, P., and Cheyrezy, M. (1995). “Composition of reactive powder concretes.” Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511.
Rokugo, K. (2008). “Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC).” Concrete Engineering series, Japan Society of Engineers, Vol. 82.
Shafieifar, M., Farzad, M., and Azizinamini, A. (2017). “Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC).” Construction and Building Materials, Vol. 156, pp. 402-411.
Shen, P., Lu, L., He, Y., Rao, M., Fu, Z., and Wang, F. (2018). “Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete.” Construction and Building Materials, Vol. 162, pp.512-522.
Song, W., and Yin, J. (2016). “Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete.” MDPI Materials, 9, 704.
Tam, C. M., Tam, Vivian W. Y., and Ng, K. M. (2012). “Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong.” Construction and Building Materials, Vol. 26, pp. 79-89.
Tran, N. T., Tran, T. K., and Kim, D. J. (2015). “High rate response of ultra-high-performance fiber-reinforced concretes under direct tension.” Cement and concrete composites, Vol. 69, pp. 72-87.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2021-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明