博碩士論文 108322093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.89.89
姓名 楊鈞棠(Chun-Tang Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 建構都市垂直發展預測模式-以臺北市內湖區與南港區為例
相關論文
★ 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例★ 應用最大熵法於蒙古山區進行森林樹種分類
★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展★ 都市化與發展:對海地永續發展之意涵
★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例
★ 融合光學衛星影像及地形資訊進行崩塌地之判釋★ 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例
★ 都市三維結構變遷之分析-以臺灣臺北市為例★ 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例
★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例
★ 分析降雨及不透水面對台南水患發生之影響★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估
★ 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例★ 母岩裸露指標之建立並應用於崩塌判釋與監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 都市土地覆蓋受到人類活動影響而產生快速的變動,因此過去研究常使用不同的都市發展驅動因子和模型來模擬和預測都市成長趨勢。隨著都市地區的人口增加,為了在稀少的都市土地增加可以使用的空間,近年來在亞洲地區,許多都市開始往垂直方向發展。臺北市亦出現垂直成長現象,位在臺北市東側的兩個行政區-內湖區與南港區,由於基隆河截彎取直工程和老舊產業遷移,出現許多閒置的土地,隨著政府開發政策和民間廠商的進駐,成為臺北市快速成長的區域。若僅監測與模擬單一水平方向的都市成長,容易低估都市的成長速度及忽略都市的結構變化。
  本研究希望分析與模擬內湖區與南港區2002至2017年間的都市垂直成長現象,透過多個年期臺北市一千分之一比例尺地形圖,取得建物空間分布和建物樓層數,將建物依樓層數分為三個高度等級進行統計,探討這兩個行政區是否出現垂直成長和空間結構改變的現象。接著使用隨機森林模式(Random Forest, RF)與多個都市發展驅動因子建立都市的建物成長分布和變遷模型,驗證模式的正確性與時效性和了解影響都市建物分布的因子。結果顯示,內湖區在2002-2017年有明顯的垂直方向都市成長,區內的容積量與中高樓層建物所占比例皆有明顯成長;南港區則是在2007年以後容積量與中高樓層建物面積出現明顯增加。隨機森林模式模擬各年期都市整體建物分布的AUC值皆0.9以上,其中對都市建物分布較重要的因子主要為自然環境和交通類別。利用模型建立的各年期三個等級的建物分布機率地圖,經過不同年期地真資料的驗證,發現AUC值從原本的0.9以上,隨著預測時間的拉長逐漸下降,且中高樓層建物預測效力下降的幅度比較大。2012-2017年建物面積變遷幅度較大,利用隨機森林模式模擬,其預測正確性約為70%。整體而言,各等級分布機率地圖在預測十年後的建地分布時,AUC值仍保持在0.8以上,代表本研究所建立的模式對於十年內的建物分布預測有一定的效力,所建立的建物分布潛勢地圖可做為未來都市發展趨勢的參考。
摘要(英) The land cover of the urban area has changed rapidly due to human activities. As the urban population keeps increasing, some cities, especially cities in East Asia, start to grow vertically to create more available space in the limited land. Taipei city, the capital city in Taiwan, can also find this phenomenon. In recent years, many construction companies and high-tech companies have entered Neihu and Nangang, two districts in the east of Taipei, and developed tall buildings that reshape the urban structure significantly since 2000.
In this research, to analyze and model the vertical urban growth in Neihu and Nangang from 2002 to 2017, this study produced the building data using 1/1000 scale topographical maps to calculate the building area and total floor area and class the building height into three categories to find out the growth trend in the two districts. Then, the random forest (RF) algorithm is selected to model the building growth based on the three-building height classes, and the outcomes were verified by topographical maps. The results show that the total floor area and the tall buildings had increased both in Neihu and Nangang since 2002, showing the urban growth in the vertical direction is significant. The RF generates the probability maps of the potential distribution and change of tall buildings in the study area, and the modeling outcomes were assessed by AUC values in the tested years which are all higher than 0.9. About 70% of changed building height in 2007-2012 are correctly predicted by the RF model. The model reveals that the natural environmental factors and traffic factors are more important to affect the distribution of buildings with different heights. However, when predicting future building height, the AUC decreases to 0.8 when the predicting year is more than 10 years. This study gives an example indicating the applicability of RF to predict future urban structure in the vertical dimension which can greatly help the decision-making of land development for government and urban planners.
關鍵字(中) ★ 垂直都市成長
★ 土地利用與地表覆蓋變遷
★ 隨機森林模式
關鍵字(英) ★ Urban development
★ Land use and land cover change (LULC)
★ Vertical urban growth
★ Random forest algorithm
★ Taipei City
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 4
1-3 研究架構 4
第二章 文獻回顧 6
2-1 都市發展議題 6
2-2 過去模擬都市土地利用與覆蓋變遷方法之回顧 7
2-3 垂直方向都市土地利用與覆蓋變遷相關研究之回顧 9
2-3-1 取得都市垂直方向土地利用資料 9
2-3-2 衡量都市垂直方向土地利用的地景指標 13
2-3-3 建立模式模擬與預測都市垂直土地利用變化 17
2-4 常見都市發展驅動因子回顧 22
第三章 研究區域與研究資料 24
3-1 研究區域介紹 24
3-1-1 內湖區 25
3-1-2 南港區 29
3-2 研究資料 34
3-2-1 臺北市一千分之一比例尺數值地形圖 35
3-2-2 都市發展驅動因子 36
第四章 研究方法 55
4-1 研究流程 55
4-2 資料處理 56
4-3 都市垂直成長指標 57
4-4 隨機森林模型原理與操作 58
4-5 建物分布與變遷機率地圖與正確性檢驗 60
第五章 研究成果 62
5-1 內湖區與南港區的都市成長變遷 62
5-1-1 臺北市與內湖區、南港區都市成長變遷分析 62
5-1-2 內湖區與南港區的空間結構變化 67
5-2 內湖區與南港區的都市建物分布與變遷模擬 80
5-2-1 整體建物分布模擬成果 80
5-2-2 三等級分布機率地圖正確性評估 83
5-2-3 三等級變遷機率地圖正確性評估 95
第六章 成果討論 103
6-1 內湖區與南港區內的垂直都市成長空間分布 103
6-2 影響建物分布與變遷的因子討論 117
6-3 未來都市建物分布潛勢 118
第七章 結論與建議 121
7-1 結論 121
7-2 建議 123
中文參考文獻 125
英文參考文獻 127
參考文獻 中文參考文獻
王祖修 (2012)。利用物件式分類技術建立都市景觀格局分析資料-以臺北市南港、內湖區為例。臺灣大學地理環境資源學研究所學位論文。
王凱弘(2011)。就法制面探討臺北市現行之容積移轉制度。中國文化大學市政暨環境規劃學系碩士學位論文。
江柏煒、潘是輝、張志源、何書亞、王靜怡、謝宛婷 (2008)。臺北市南港區志。臺北市:臺北市政府。
吳振發、林裕彬 (2006)。汐止市土地利用時空間變遷模式。都市與計劃,33(3),231-259。
李家儂 (2006)。交通運輸與土地使用整合規劃之演變-大眾運輸導向發展的都市發展模式。土地問題研究季刊,5(3),70-83。
林峰田 (2011)。臺北都會區土地使用變遷模型之比較研究-臺北都會區土地使用變遷模型之比較研究(II)。行政院國家科學委員會專題研究計畫成果報告。臺北市:國立臺灣大學建築與城鄉研究所。
林欽榮 (2015)。與時俱進的規劃策略。載於林秀澧、高名孝(主編),計劃城事:戰後臺北都市發展歷程(74-79)。臺北市:田園城市文化。
洪紫萱 (2016)。應用衛星影像於都市發展之監測與預測-以臺灣桃園為例。國立中央大學遙測科技碩士學位學程學位論文。
徐國城、賴宗裕、詹士樑 (2010)。臺北都會區空間蔓延與緊密發展型態趨勢之研究。都市與計劃,37(3),281-303。
張剛維 (2008)。土地使用分區管制制度之執行與制度變遷-財產權觀點之分析。國立政治大學地政研究所博士學位論文。
莊詠婷 (2016)。都市三維結構變遷之分析-以臺灣臺北市為例。國立中央大學遙測科技碩士學位學程學位論文。
陳良圳 (2006)。臺北盆地內湖、南港地區的拓墾與產業發展(1748-1945)。國立中央大學歷史研究所碩士學位論文。
陳金讚 (2006)。內湖區志。臺北市:臺北市政府。
陳冠升 (2014)。衛星影像應用於都市發展趨勢之研究。國立中央大學遙測科技碩士學位學程學位論文。
陳時仲 (2015)。隨機森林模型效力評估。交通大學統計學研究所碩士學位論文。
曾映傑 (2016)。以空間形構分析臺北市都市型態發展變遷之研究。中國文化大學市政暨環境規劃學系碩士學位論文。
黃書禮、蔡靜如 (2000)。臺北盆地土地利用變遷趨勢之研究。都市與計劃,27(1),1-23。
黃健生 (2002)。都市City。國家教育研究院─雙語詞彙、學術名詞暨辭書資訊網,取自http://terms.naer.edu.tw/detail/1319050/。
葉孟考 (2002)。都市化Urbanization。國家教育研究院-雙語詞彙、學術名詞暨辭書資訊網,取自http://terms.naer.edu.tw/detail/1319051/ 。
臺北市政府 (2018)。臺北市都市計畫書-變更臺北市南港區鐵路地下化沿線土地主計畫案。臺北市:臺北市政府。
臺北市政府民政局 (2015)。臺北市2015年區里界說。取自 http://canet.civil.taipei/Ebook/104_TPDist_New/HTML5/pc.html#/page/1。
臺北市政府都市發展局 (2018)。臺北市都市計畫書-臺北市南港區都市計畫主要計畫(第二次通盤檢討)案。臺北市:臺北市政府。
臺北市政府都市發展局 (2019)。臺北市都市計畫書-臺北市內湖區都市計畫通盤檢討(主要計畫)案(第三階段)。臺北市:臺北市政府。
劉小蘭、許佩漩、蔡育新 (2010)。臺灣都市蔓延因素分析。地理學報,58,49-63。
顏啟峯、張國楨 (2015)。基隆河土地覆蓋時空變遷分析:以第二次截彎取直計畫範圍內為例。地理研究,62,71-90。

英文參考文獻
Ahlfeldt, G.M., Barr, J. (2020). Viewing urban spatial history from tall buildings. Regional Science and Urban Economics, 103618. Retrieved from https://doi.org/10.1016/j.regsciurbeco.2020.103618.
Benguigui, L., Czamanski, D, Roth, R. (2008). Modeling cities in 3D: a cellular automata approach. Environment and Planning B: Planning and Design, 35(3), 413-430.
Bonczak, B., Kontokosta, C.E. (2019). Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data. Computers, Environment and Urban Systems, 73, 126-142.
Breiman, L (2001). Random Forests. Machine Learning, 45, 5-32.
Brown, D.G., Walker, R., Manson S., Seto, K. (2012). Modeling Land Use and Land Cover Change. Land Change Science, 6, 395–409.
Brunner, D., Lemoine, G., L. Bruzzone, L. (). Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 48(5), 2403-2420.
Chaudhuri, G., Clarke, K. (2013). The SLEUTH Land Use Change Model: A Review. The International Journal of Environment Resources Research, 1(1), 88-105.
Chen, T.H.K., Qiu, C.P., Qiu, C.P, Schmitt, M., Zhu, X.X., Sabel, C.E., Prishchepov, A.V. (2020). Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution. Remote Sensing of Environment, 251, 112096.
Chen, Z., Xu, B., Devereux, B. (2014). Urban landscape pattern analysis based on 3D landscape models. Applied Geography, 55, 82-91.
Esch, T., Zeidler, J., Palacios-Lopez, D., Marconcini, M., Roth, A., Mönks, M., Leutner, B., Brzoska, E., Metz-Marconcini, A., Bachofer, F., Loekken, S., Dech, S. (2020). Towards a Large-Scale 3D Modeling of the Built Environment—Joint Analysis of TanDEM-X, Sentinel-2 and Open Street Map Data. Remote Sensing, 12(15), 2391.
Firozjaei, M.K., Sedighi, A., Argany, M., Jelokhani-Niaraki, M., Arsanjani, J.J. (2019). A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities, 93, 120-135.
Ge, M., Fang, S., Gong, Y., Tao, P., Yang, G., Gong, W. (2021). Understanding the Correlation between Landscape Pattern and Vertical Urban Volume by Time-Series Remote Sensing Data: A Case Study of Melbourne. Geo-Information, 10(1), 14.
Handayani, H.H., Murayama, Y., Ranagalage, M., Liu, F., Dissanayake, D., (2018). Geospatial Analysis of horizontal and vertical urban expansion using multi-spatial resolution data: a case study of Surabaya, Indonesia. Remote Sensing, 10(10), 1599.
He, S., Wang, X., Dong, J. Wei, B., Duan, H., Jioa, J., Xie, Y., (2019) Three-Dimensional urban expansion analysis of valley-type cities: a case study of Chengguan District, Lanzhou, China. Sustainability, 11(20), 5663.
J. Willneff, J., Poon, J., Fraser, C. (2005). Single-image high-resolution satellite data for 3D information extraction. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(1/W3), 1-6.
Jenks, M. (2019). Compact City. The Wiley Blackwell Encyclopedia of Urban and Regional Studies. United States: John Wiley & Sons.
Kuru, A., Yuzer, M.A. (2021). Urban growth prediction with parcel based 3D urban growth model (PURGOM). MethodsX, 8, 101302.
Li, M.M., Koks, E., Taubenbock, H., Vilet, J.V. (2020). Continental-scale mapping and analysis of 3D building structure. Remote Sensing of Environment, 245, 111859.
Li, X., Gong, P. (2016). Urban growth models: progress and perspective. Science Bulletin, 61(21), 1637-1650.
Lin, J., Huang, B., Chen, M. (2014). Modeling urban vertical growth using cellular automata – Guangzhou as a case study. Applied Geography, 53, 172-186.
Lin, J., Wan, H., Cui, Y. (2020). Analyzing the spatial factors related to the distribution of building heights in urban areas: A comparative case study in Guangzhou and Shenzhen. Sustainable Cities and Society, 52, 101854.
Liu, M., Hu, Y.M., Li, C.L. (2017). Landscape metrics for three-dimensional urban building pattern recognition. Applied Geography, 87, 66-72.
Liu, S., Fan, X.T., Wwn, Q.K., Liang, W., Wu, Y.F. (2014). Simulated impacts of 3D urban morphology on urban transportation in megacities: case study in Beijing. International Journal of Digital Earth, 7(6), 470-491.
Liu, Y., Chen, C., Li, J., Chen, W.Q. (2020). Characterizing three dimensional (3-D) morphology of residential buildings by landscape metrics. Landscape Ecology, 35(11), 2587-2599.
Mahtta, R., Mahendra, A., Seto, K. (2019). Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environmental Research Letters, 14(12), 124077.
Meyer, W.B., Turner, B. (1996). Land-use/land-cover change: challenges for geographers. GeoJournal, 39, 237–240.
Milojevic-Dupont, N., Hans. N., Kaack, L.H., Zumwald, M., Andrieux, F. (2020). Learning from urban form to predict building heights. PLOS ONE, 15(12), e0242010.
Misra, P., Avtar, R., Takeuchi, W. (2018). Comparison of Digital Building Height Models Extracted from AW3D, TanDEM-X, ASTER, and SRTM Digital Surface Models over Yangon City. Remote Sensing, 10(12), 2008.
Mitsuda, Y., Ito, S. (2011). A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landscape Ecology Engineering, 7(1), 117-125.
Palme, M. Ramirez, J.G. (2013). A critical assessment and projection of urban vertical growth in Antofagasta, Chile. Sustainability, 5(7), 2840-2855.
Pandey, P.C., Koutsias, N., Petropoulos, G,P, Srivastava, P.K., Dor, E.B. (2021). Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers - a review of the state of the art. Geocarto International, 36(9), 957-988.
Park, M., Jung, D., Lee, S., Park, S. (2020) Heatwave Damage Prediction Using Random Forest Model in Korea. Applied Sciences, 10(22), 8237.
Perez, R.I.P., Carballal, A., Rabunal, J.R. (2017). Predicting vertical urban growth using genetic evolutionary algorithms in Tokyo`s Minato Ward. Journal of Urban Planning and Development, 144(1), 04017024.
Qing, J., Fang, C.L., Wang, Y., Li, G.D., Wang, S.J. (2015). Evaluation of three-dimensional urban expansion: a case study of Yangzhou City, Jiangsu Province, China. Chinsese Geographical Science, 25(2), 224-236.
Ranagalage, M., Murayama, Y. (2018). Measurement of urban built-up volume using remote sensing data and geospatial techniques. Tsukuba Geoenvironmental Sciences, 14, 19-29.
Shao, Y., Taff, G.N., Walsh, S.J. (2011). Shadow detection and building-height estimation using IKONOS data. International Journal of Remote Sensing, 32(22), 6929-6944.
Shi, L.Y., Shao, G.F., Cui, S.H., Li, X.Q., Lin, T., Yin, K., Zhao, J.Z. (2009). Urban three-dimensional expansion and its driving forces – a case study of Shanghai, China. Chinese Geographical Science, 19(4), 291-298.
Skovbro, A. (2002). Urban densification – a sustainable urban policy? The Sustainable City II. Southampton: WIT Press.
Soergel,U., Michaelsen,E., Thiele,A., Cadario,E., Thoennessen,U. (2009). Stereo analysis of high-resolution SAR images for building height estimation in cases of orthogonal aspect directions. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 490-500.
Stewart, I.D., Oke, T.R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.
Triantakonstantis, D. and Mountrakis, G. (2012). Urban Growth Prediction: A Review of Computational Models and Human Perceptions. Journal of Geographic Information System, 4, 555-587.
Turner, B.L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., Leemans, R. (1995). Land-Use and Land-Cover Change: science/research plan. IGBP Report No.35, IHDP Report 7, Stockholm and Geneva: IGBP of the ICSU and IHDP of the ISSC.
United Nations, Department of Economic and Social Affairs, Population Division. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. New York: UN Population Division.
United Nations, Department of Economic and Social Affairs, Population Division. (2019). World Urbanization Prospects: The 2018 Revision, Highlights. New York: UN Population Division.
Xu, Y., Liu, M, Hu, Y., Li, C., Xiong, Z. (2019). Analysis of Three-Dimensional space expansion characteristics in old industrial area renewal using GIS and Barista: A case study of Tiexi District, Shenyang, China. Sustainability, 11(7), 1860.
Zambon, I., Colantoni, A., Salvati, L. (2019). Horizontal vs vertical growth: Understanding latent patterns of urban expansion in large metropolitan regions. Science of the Total Environment, 654, 778-785.
Zhang, W., Li, W., Zhang, C., Ouimet, W.B. (2017). Detecting horizontal and vertical urban growth from medium resolution imagery and its relationships with major socioeconomic factors. International Journal of Remote Sensing, 38(12), 3704-3734.
Zhao, C.H, Wemg, Q.H., Hersperger, A.M. (2020). Characterizing the 3D urban morphology transformation to understand urban form dynamics: A case study of Austin, Texas, USA. Landscape and urban planning, 203, 103881.
Zhou, D.Y., Li, Z.T., Wang, S.F., Tian, Y.Y., Zhang, Y., Jiang, G.H. (2021). How does the newly urban residential built-up density differ across Chinese cities under rapid urban expansion? Evidence from residential FAR and statistical data from 2007 to 2016. Land Use Policy, 104, 105365.
指導教授 姜壽浩(Shou-Hao Chiang) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明