博碩士論文 90522030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.15.147.199
姓名 郭正德(antony kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用小波轉換作紋理影像之瑕疵檢測及合成
(Applications of Wavelet Transforms on Textured Images:Defect Inspection and Synthesis)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著電子時代來臨,各種數位影像工具,如數位相機、數位攝影機、掃描器....等,功能及品質不斷提高,價格也日趨便宜,多媒體影像資料因此大量的增加,如何妥善儲存及管理這些影像資料,變得十分的重要,目前在影像資料特徵描述上,大都仍以顏色(colors)、形狀(shapes)、紋理(textures)來表示,因此有關紋理的分析研究便顯得非常重要。
本論文主要目的在利用小波轉換(Wavelet transformation)的理論,研究紋理瑕疵檢測及紋理合成(synthesis)。在紋理瑕疵檢測方面,利用紋理正常部份與瑕疵在小波係數的分佈範圍不同,加以分離出來,在先前的紋理瑕疵檢測方法裏,大都必須訓練紋理正常部份,為了解決這個問題,本論文提出一個自動訓練的方法,藉由瑕疵與正常部份在影像上的一些特性,自動決定訓練區塊的方法,可以使影像在輸入的時候,重新取樣訓練,避免因為外在條件因素的變化,而使檢測發生錯誤。
在紋理合成方面,利用小波轉換在影像的特性,在不同頻率區塊具有影像不同的資訊,抽取出紋理邊緣特徵,結合水平及垂直邊緣資訊,找出紋理的基本區塊,利用找出的基本區塊合成出原始影像,並利用本論文提出的瑕疵檢測方法驗證合成的效果。
摘要(英) Due to the emerging of computer technologies, the functions and quality of imaging devices, such as digital camera, digital camcorder, and scanner, have been continuously improved. Moreover, the cost of these devices is also rapidly reduced. The content conveyed by multimedia is thus more splendid and richer. The proper management of the image data is thereby more and more important. The features that describe image data are mainly represented by using color, shape, and texture. In this thesis, we will elaborate on the analysis of texture and its application in image analysis.
The main purpose of this dissertation is to adopt the concept of wavelet transform and apply it to defect detection and texture synthesis in texture images. In texture defect detection, the defects can be discriminated according to the distribution ranges of wavelet coefficients between the normal and defective parts of texture images. In traditional texture defect detection methods, the normal parts of texture images have to be trained in advance. In this thesis, we propose a novel method to automatically determine the training regions based on the characteristics exhibited by normal and defective texture images. In this way, the detection error can be reduced because of the avoiding of environmental changes.
In texture synthesis, texture edge features can be extracted according to the characteristics of wavelet transformation, that is different frequency bands will exhibit different information. By combining horizontal and vertical edge information, the basic blocks of textures can be built. Original images can be synthesized by the extracted basic blocks. Moreover, we utilize the proposed texture defect detection method to verify the synthesis results.
關鍵字(中) ★ 瑕疵檢測
★ 紋理
★ 小波轉換
★ 合成
關鍵字(英) ★ Synthesis
★ Defect Inspection
★ texture
★ wavelet transform
論文目次 目錄
Abstract..............................................I
摘要................................................III
目錄.................................................IV
附圖目錄.............................................VI
第一章 緒論...........................................1
1.1 研究動機 .........................................1
1.2 相關研究..........................................3
1.3 論文架構..........................................5
第二章 小波理論.......................................6
2.1小波轉換的演進.....................................7
2.2 基底函數..........................................9
2.2.1 小波函數.......................................10
2.2.2 尺度函數.......................................11
2.2.3 基底函數特性...................................12
2.3 小波轉換.........................................13
2.3.1 連續小波轉換與離散小波轉換.....................14
2.3.2 一維小波轉換與二維小波轉換.....................15
2.4 應用於影像的小波轉換.............................18
第三章 紋理瑕疵檢測..................................21
3.1 方法簡介.........................................22
3.2 特徵抽取.........................................24
3.3 基底函數與小波階數選擇...........................26
3.3.1 基底函數選擇...................................26
3.3.2 小波階數選擇...................................27
3.4 訓練樣本取樣.....................................29
3.4.1 人工取樣.......................................29
3.4.2 自動取樣.......................................30
第四章 紋理合成......................................32
4.1 方法簡介.........................................33
4.2 邊緣資訊抽取.....................................35
4.3 重覆規則尋找.....................................37
4.4 紋理合成與檢測...................................38
第五章 實驗結果與討論................................40
5.1 紋理瑕疵檢測實驗結果.............................41
5.2 紋理瑕疵檢測實驗討論.............................45
5.3 紋理合成實驗結果.................................47
5.4 紋理合成實驗討論.................................51
第六章 結論與未來工作................................52
6.1 結論.............................................52
6.2 未來工作.........................................53
參考文獻.............................................54
參考文獻 [1] A.L. Amet, A. Ertuzun, and A. Ercil, “Texture defect detection using subband domain co-occurrence matrices,” Image Analysis and Interpretation, pp. 205-210 Apr 1998.
[2] A. Kumar and G. Pang, “Identification of surface defects in textured materials using wavelet packets,” Industry Applications Conference, Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE , Volume: 1 , pp.247 -251 30 Sep-4 Oct 2001.
[3] C.A. Bouman and B. Liu, “Multiple Resolution Segmentation of Textured Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 2, pp. 99-113, Feb. 1991.
[4] C. Neubauer , “Segmentation of defects in textile fabric,” IEEE Pattern Recognition,Vol.1.Conference A:Computer Vision and Applications , pp688-691,Aug. 1992.
[5] C. A. Bouman and M. Shapiro, “A multiscale random field model for Bayesian image segmentation,” IEEE Trans. Image Processing, vol. 3, pp. 162–177, Mar. 1994.
[6] C.S. Lu, P.C. Chung, and C.F. Chen, “Unsupervised Texture Segmentation via Wavelet Transform,” Pattern Recognition, vol. 30, no. 5, pp. 729-742, 1997.
[7] C.T. Li, “Unsupervised Image Segmentation Using Multiresolution Markov Random Fields,” PhD thesis, Univ. of Warwick, U.K., 1998.
[8] E. Salari and Z. Ling, “Texture segmentation using hierarchical wavelet decomposition, ” Industrial Electronics, Proceedings of the IEEE International Symposium on 10-14 Jul 1995.
[9] G. Lohmann , “Co-occurrence-based analysis and synthesis of textures,”Pattern Recognition, Vol. 1 - Conference A: Computer Vision & Image Processing. pp.449-453 9-13 Oct 1994.
[10] H. Choi, J. K. Romberg, R. G. Baraniuk, and N. G. Kingsbury, “Hidden Markov tree modeling of complex wavelet transforms,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Istanbul, Turkey, June 2000.
[11] H. Choi and R. Baraniuk, “Multiscale image segmentation using wavelet-domain hidden Markov models,” IEEE Trans. Image Processing,vol. 10, pp. 1309–1321, Sept. 2001.
[12] H. Fujiwara, Z. Zhong , and K. Hashimoto , “Toward automated inspection of textile surfaces: removing the textural information by using wavelet shrinkage,” IEEE International Conference on , Volume: 4 , pp. 3529 –3534,2001.
[13] M. Unser, “Texture classification and segmentation using wavelet frames,” IEEE Trans. Image Processing, vol. 4, pp. 1549–1560, Nov.1995.
[14] M. S. Crouse and R. G. Baraniuk, “Contextual hidden Markov models for wavelet-domain signal processing,” in Proc. 31th Asilomar Conf. M. L. Comer and E. J. Delp, “Segmentation of textured images using a multiresolution Gaussian autoregressive model,” IEEE Trans. Image Processing, vol. 8, pp. 408–420, Mar. 1999.
[15] M. C. Lee and C.M. Pun,“Texture classification using dominant wavelet packet energy features,” Image Analysis and Interpretation, Proceedings. 4th IEEE Southwest Symposium , pp.301 -304 2000.
[16] P. w. Chen , L. T. Chun ,and H. F. Yauetc , “Classifying textile faults with a back-propagation neural network using power spectra,” Textile Res.j.68(2),pp121-126,1998.
[17] R. Ghozi, and B.C. Levy, “Phase transitions and multi-scale Markov random fields: application to texture synthesis,”Signals, Systems and Computers, pp. 1-5 1993.
[18] R. Paget and I. D. Longstaff, “Texture synthesis via a noncausal nonparametric Markov random field,” IEEE Trans. Image Processing, vol.7, pp. 925–931, June 1998.
[19] R. Wilson, A. Calway, and E.R.S. Pearson, “A Generalised Wavelet Transform for Fourier Analysis: The Multiresolution Fourier Transform and Its Application to Image and Audio Signal Analysis,” IEEE Trans. Information Theory, vol. 38, no. 2, Mar. 1992.
[20] T. Chang and C.-C.J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Processing, vol.2 Issue: 4 , pp.429 –441 Oct 1993.
[21] T. Chang, and C.-C.J. Kuo, “Texture segmentation with tree-structured wavelet transform,” ime-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium , pp. 543 –546 4-6 Oct 1992.
[22] T.-I. Hsu and R. Wilson, “A two-component model of texture for analysis and synthesis,” IEEE Trans. Image Processing, vol. 7, pp.1466–1476, Oct. 1998.
[23] Z. Kato, M. Berthod, and J. Zerubia, “A Hierarchical Markov Random Field Model and Multi-Temperature Annealing forParallel Image Classification,” Technical Report 1938, INRIA, 1993.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2003-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明