博碩士論文 90522046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.119.105.239
姓名 陳明佑(Ming-Yu Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 遺傳疾病相關重複性序列之整合性分析工具
(An Integrated Tool for Investigating Genetic Disorder-Relevant Tandem Repeats in Human Genome)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 連續性重複序列(Tandem Repeats)與人類的疾病有所關聯,而且在演化和調控過程中都扮演重要的角色。當發現遺傳疾病出現在病人身上,遺傳疾病的研究專家也許會對特定條件的連續性重複序列感興趣,接著設計引子(Primer)來做實驗並驗證其假設。此研究的目的在於整合遺傳疾病相關資訊,並提供遺傳疾病專家一個快速整合之分析平台。一方面整合人類基因體全序列、基因資訊、遺傳疾病資訊與連續性重複序列之資訊;另一方面建構一個以網路為介面的工具,幫助專家快速搜尋相關遺傳疾病之基因資訊,提供引子協助偵測遺傳疾病,加速實驗與鑑定之流程。我們設計出容易使用的介面,並整合了對研究疾病有關的資訊在此工具上。在此研究中,我們先在人類基因體上定出連續性重複序列,並整合相關的基因資訊,再根據OMIM資料庫上記錄之疾病和基因的關係,展示出可能和疾病有關的連續性重複序列,並提供相關的引子之設計。
摘要(英) Tandem repeats (TRs) are associated with human inherited diseases, and play a role in evolution and are important in regulatory processes. Experts who are researching in genetic disorders may be interested in TRs with particular limits, and they will design primer sequence for experiment later. To integrate the information about human genetic disorders, and to provide an efficient tool for observing the information about TRs and genetic disorders are the objectives of this study. The first objective is to establish a database which integrates gene information, TRs and OMIM data. Users can analyze genetic disorders efficiently with this tool. The second objective is to provide a primer design tool for identifying specific TRs. Users obtain interesting primers from specific disease features and experiment the patient’’s sample for verifying the suspect. This tool is designed with a user-friendly interface and integrated information for experts to analyze genetic disorders, such as the primer design. In this work, we have identified TRs in the complete human genome from the publicly available sequences and mapped to the genes located in. According to the relationship of genes and genetic disorders recorded by OMIM, the TRs which potentially relevant to the genetic disorders will be shown.
關鍵字(中) ★ 重複性序列
★ 遺傳疾病
關鍵字(英) ★ genetic disorder
★ heritable diseases
★ tandem repeats
★ inherited diseases
論文目次 Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Goal 3
Chapter 2 Related Works 5
2.1 Tandem Repeats Database and Finding Tools 5
2.2 Primer Design Tools 6
2.3 Disease Relative Databases and Genome Resources 7
2.4 Density and Distribution Analyses of Trinucleotide Microsatellites 8
Chapter 3 Materials and Methods 10
3.1 Materials 11
3.2 Data Processing 12
3.3 Web Interface Designing 15
Chapter 4 Results 17
4.1 About the Tandem Repeats Sites 17
4.1.1 Distribution of tri-, tetra- and penta- nucleotide Tandem Repeats 17
4.2 Access the Database via Web Interface 22
4.2.1 Query of the System 22
4.2.2 Browse of the System 22
Chapter 5 Discussion 31
5.1 Distribution of trinucleotide, tetranucleotide and pentanucleotide tandem repeats 31
5.2 Future Work 32
References 34
Appendix A Distribution of Tandem Repeats in the Forms of Tetranucleotides and Pentancleotides A-1
參考文獻 1. Richard, G.F. and F. Paques, Mini- and microsatellite expansions: the recombination connection. EMBO Rep, 2000. 1(2): p. 122-6.
2. Stallings, R.L., Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: implications for human genetic diseases. Genomics, 1994. 21(1): p. 116-21.
3. Cummings, C.J. and H.Y. Zoghbi, Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet, 2000. 9(6): p. 909-16.
4. Tolmacheva, E.N. and S.A. Nazarenko, Polymorphism of trinucleotide repeats at loci FRAXA and FRAXE in the population of Tomsk. Genetika, 2002. 38(2): p. 268-73.
5. Knight, S.J., et al., Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell, 1993. 74(1): p. 127-34.
6. Cossee, M., et al., Frataxin fracas. Nat Genet, 1997. 15(4): p. 337-8.
7. Timchenko, N.A., et al., Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol Cell Biol, 2001. 21(20): p. 6927-38.
8. Koob, M.D., et al., An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet, 1999. 21(4): p. 379-84.
9. Holmes, S.E., et al., Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet, 1999. 23(4): p. 391-2.
10. Brooks, B.P. and K.H. Fischbeck, Spinal and bulbar muscular atrophy: a trinucleotide-repeat expansion neurodegenerative disease. Trends Neurosci, 1995. 18(10): p. 459-61.
11. Ikeuchi, T., et al., Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol, 1995. 37(6): p. 769-75.
12. Group, H.s.D.C.R., A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell, 1993. 72(6): p. 971-83.
13. Sermon, K., et al., PGD in the lab for triplet repeat diseases - myotonic dystrophy, Huntington's disease and Fragile-X syndrome. Mol Cell Endocrinol, 2001. 183 Suppl 1: p. S77-85.
14. Rasmussen, A., et al., Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol, 2001. 50(2): p. 234-9.
15. Wilmot, G.a.W., ST, Chapter 1, A new mutational basis for disease., in Genetic Instabilities and Hereditary Neurological Diseases, W.R.a.W. ST, Editor. 1998, Academic Press: San Diego, CA. p. 3-12.
16. McMurray, C.T., DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A, 1999. 96(5): p. 1823-5.
17. Ruitberg, C.M., D.J. Reeder, and J.M. Butler, STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res, 2001. 29(1): p. 320-2.
18. Benson, G., Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999. 27(2): p. 573-80.
19. Breslauer, K.J., et al., Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A, 1986. 83(11): p. 3746-50.
20. SantaLucia, J., Jr., H.T. Allawi, and P.A. Seneviratne, Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry, 1996. 35(11): p. 3555-62.
21. Sugimoto, N., et al., Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res, 1996. 24(22): p. 4501-5.
22. Allawi, H.T. and J. SantaLucia, Jr., Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry, 1997. 36(34): p. 10581-94.
23. Le Novere, N., MELTING, computing the melting temperature of nucleic acid duplex. Bioinformatics, 2001. 17(12): p. 1226-7.
24. Olson, S.A., EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform, 2002. 3(1): p. 87-91.
25. Baldino, F., Jr., M.F. Chesselet, and M.E. Lewis, High-resolution in situ hybridization histochemistry. Methods Enzymol, 1989. 168: p. 761-77.
26. Rozen, S. and H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000. 132: p. 365-86.
27. Hamosh, A., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res, 2002. 30(1): p. 52-5.
28. Clamp, M., et al., Ensembl 2002: accommodating comparative genomics. Nucleic Acids Res, 2003. 31(1): p. 38-42.
29. Edwards, J. and P. Tarczy-Hornoch, Implementation of a classification hierarchy for the GeneTests/GeneClinics genetic testing databases. Proc AMIA Symp, 2002: p. 235-9.
30. Benson, D.A., et al., GenBank. Nucleic Acids Res, 2003. 31(1): p. 23-7.
31. Subramanian, S., et al., Triplet repeats in human genome: distribution and their association with genes and other genomic regions. Bioinformatics, 2003. 19(5): p. 549-52.
32. Kruglyak, L., Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999. 22(2): p. 139-44.
33. Martin, E.R., et al., Analysis of association at single nucleotide polymorphisms in the APOE region. Genomics, 2000. 63(1): p. 7-12.
34. Sherry, S.T., et al., dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 2001. 29(1): p. 308-11.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2003-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明