博碩士論文 108621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.128.197.209
姓名 林辰洋(Chen-Yang Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用GSI三維混成同化探討GNSS掩星觀測資料對全球模式FV3颱風模擬的影響
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著福爾摩沙衛星七號於2019年6月25日發射升空,透過接收全球定位衛星發射通過大氣層與電離層產生的折射訊號,並利用掩星觀測(Radio Occultation, RO)技術,計算訊號的偏折程度並反演成大氣層與電離層的狀態,其中訊號的偏折程度又稱為偏折角(bending angle),利用資料同化系統將得到之偏折角進行資料同化,增加模式的預報能力,並改善廣大洋面上缺乏觀測資料的問題。本篇研究使用臺灣中央氣象局與美國國家環境預報中心(National Centers for Environment Prediction, NCEP)合作,進一步改善成適合台灣地區預報之CWB FV3GFS,其資料同化系統為NCEP所發展之GSI 3DEnVar,目前使用的版本為尚未正式上線作業的版本。本篇研究使用CWB FV3GFS,並利用資料同化系統於颱風生成前14天開始進行10天未包含福衛七號資料之同化循環,並於颱風生成前四天,再分別進行有無同化福衛七號偏折角之實驗,並於各個00Z及12Z進行五天預報,本篇研究針對西北太平洋三個強度較強且路徑未受地形影響之颱風,哈吉貝(2019)、梅莎(2020)及海神(2020)進行模擬並分析。
研究結果顯示,兩實驗於此三個颱風路徑模擬結果與日本氣象廳最佳路徑相當接近,整體的路徑誤差都不大,在誤差統計中,有使用福衛七號RO資料之實驗WB分別在梅莎的路徑、海神的最大風速及哈吉貝與梅莎的中心最低氣壓之誤差低於未使用福衛七號RO資料之實驗NB。在三個颱風的平均誤差中,實驗WB於預報時間前24小時最大風速及中心最低氣壓之誤差也小於實驗NB,在誤差分布圖中,實驗WB於預報時間前48小時其最大風速及中心最低氣壓之誤差大多數小於實驗NB。亦選出實驗WB路徑改善最明顯之個案:哈吉貝1009_00Z及梅莎0830_12Z,其中梅莎0830_12Z之強度也有獲得改善,兩個案之分析場與NCEP分析場相當接近,但颱風中心之風速及濕度都有較弱的情況,其中實驗WB之強度較強且結構與NCEP分析場較為相似,而在個案梅莎0830_12Z之預報中實驗WB強度較強於實驗NB且更接近最佳路徑,研究結果顯示,實驗WB之颱風風速較強且發展較高,中心比濕也較大,且在颱風之眼牆區域比濕較大,使得颱風更有利於發展。在兩個個案之渦度收支分析中,皆發現其主要受到水平平流項主導,雖然垂直平流項、輻合輻散項及傾斜項帶來的貢獻較少,但提供的向量皆垂直於水平平流項,因此對於方向上的影響非常大,也使得兩實驗的路徑上產生差異。
摘要(英) The FORMOSAT-7 satellites, which were launched into space on June 25, 2019, provide higher resolution and quality radio occultation data than FORMOSAT-3. The radio signals are transmitted from the satellites of Global Navigation Satellite System (GNSS) and received by low earth orbit (LEO) satellites. The vertical profiles of bending angle are derived by measuring the refraction of the signals. Radio occultation measurements are helpful for numerical weather prediction (NWP), which can improve the analysis and thus further improve the typhoon track and intensity prediction.
In this study, the global NWP system at CWB (CWB FV3GFS), which utilizes the global model FV3GFS and the GSI 3DEnVar data assimilation system, is used to assimilate observation data. The impacts of bending angle data assimilation on forecasts of typhoons Hagibis, Maysak and Haishen are investigated. Both experiments that assimilate and don’t assimilate bending angle data (denoted by WB and NB, respectively) are performed and they are conducted for 120-h forecast at every 00Z and 12Z. The experiments are initialized at 14 days before the observed cyclogenesis time of each typhoon.
The model results show that the forecasted tracks of all WB and NB experiments are close to the best tracks from JMA, and the track predictions for Maysak and Haishen are significantly improved in their later forecasts. Further comparisons on the forecasted tracks show that the track errors for WB are slightly larger than NB. The track errors for WB are not improved for all typhoons, however the intensity errors are significantly improved in a statistical manner, particularly for the pressure errors. The experiments that their forecasted tracks are closer to the best track are chosen for detailed analysis. The WB analyses after data assimilation for Maysak and Hagibis are closer to the NCEP GDAS/FNL data compared to NB and thus improve the typhoon intensity and structure. For Maysak, stronger wind near the typhoon center at the initial time is produced in WB than NB and is accompanied by moister updrafts, which is favorable for the development of the typhoon.
關鍵字(中) ★ 颱風
★ 資料同化
★ 偏折角
關鍵字(英)
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
表目錄 VII
圖目錄 VII
第一章、前言 1
1-1前言 1
1-2研究目標 3
第二章、資料來源與實驗設計 5
2-1 資料來源 5
2-2 GNSS RO掩星觀測資料 5
2-3 模式設定 6
2-4 資料同化系統 7
2-5 渦度趨勢收支分析 9
2-6 氣旋及實驗方法 10
第三章、實驗結果 12
3-1 路徑模擬結果 12
3-2 誤差統計 14
第四章、個案分析 18
4-1 颱風哈吉貝 18
4-2 颱風梅莎 24
第五章、結論與未來展望 32
5-1 結論 32
5-2 未來展望 33
參考文獻 34
附表與附圖 38
參考文獻 阮子齊,2019:利用高解析度全球模式FV3GFS探討侵台颱風瑪麗亞(2018)受地形影響之路徑偏折,國立中央大學,大氣物理研究所,碩士論文。
沙聖浩,2020:颱風利奇馬Lekima (2019)通過臺灣的數值研究:地形對不同颱風路徑的影響,國立中央大學,大氣物理研究所,碩士論文。
施政澎,2019:MPAS-GSI Hybrid同化GPS掩星資料對2016年尼伯特颱風預報的影響,國立中央大學,大氣物理研究所,碩士論文。
徐儒風,2021:利用WRF混成資料同化系統探討福衛七號掩星資料對熱帶氣旋生成模擬的影響,國立中央大學,大氣物理研究所,碩士論文。
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Sokolovskiy, 2009: Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Oceanic Sci., 20, 133–154.
Chen, S.-Y., T.-K. Wee, Y.-H., Kuo, Bromwich, D. H., 2014: An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon. Wea. Rev., 142(11), 4187– 4206.
Chen, J.-H., S.-J. Lin, L.-J. Zhou, X. Chen, S. Rees, M. Bender, M. Morin, 2019: Evaluation of Tropical Cyclone Forecasts in the Next Generation Global Prediction System. Mon. Wea. Rev., 147, 3409–3428.
Chen, S.Y., Y.-H. Kuo, C.-Y., Huang, 2020: The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment. Mon. Wea. Rev., 148, 2701–2717.
Chen, S.-Y., T.-C. Nguyen, and C.-Y. Huang, 2021: Impact of radio occultation data on the prediction of Typhoon Haishen (2020) with WRFDA hybrid assimilation. Atmosphere, 12, 1397.
Chen, S.-Y., C.-Y., Liu, C.-Y., Huang, S.-C., Hsu, H.-W., Li, P.-H., Lin, J.-P., Cheng, and C.-Y., Huang, 2021: An Analysis Study of FORMOSAT-7/COSMIC-2 Radio Occultation Data in the Troposphere. Remote Sensing., 13, 717.
Chen, S.-Y., C.-P., Shih, C.-Y., Huang, 2021: An Impact Study of GNSS RO Data on the Prediction of Typhoon Nepartak (2016) Using a Multiresolution Global Model with 3D-Hybrid Data Assimilation. Wea. Forecasting, 36, 957–977.
Hamill, T. M., C. Snyder, 2000: A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme. Mon. Wea. Rev., 128, 2905–2919.
Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the 53 cubed-sphere grid. Mon. Wea. Rev., 141, 283–306.
Harris, L. M., S.-J. Lin, and C. Tu, 2016: High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Climate, 29, 4293–4314.
Huang, C.-Y., S.-Y. Chen, S. K. A. V. P. Rao Anisetty, S.-C. Yang, and L.-F. Hsiao, 2016: An impact study of GPS radio occultation observations on frontal rainfall prediction with a local bending angle operator. Wea. Forecasting, 31, 129–150.
Huang, C.-Y., T.-C. Juan, H.-C. Kuo, J. -H. Chen, 2020: Track Deflection of Typhoon Maria (2018) during a Westbound Passage Offshore of Northern Taiwan: Topographic Influence. Mon. Wea. Rev., 148, 4519–4544.
Hazelton, A. T, M. Bender, M. Morin, L. Harris, S.-J. Lin, 2018a: 2017 Atlantic Hurricane Forecasts from a High-Resolution Version of the GFDL fvGFS Model: Evaluation of Track, Intensity, and Structure. Wea. Forecasting, 33, 1317–1337.
Hazelton, A. T., L. Harris, S. J. Lin, 2018b: Evaluation of tropical cyclone structure forecasts in a high-resolution version of the multiscale GFDL fvGFS model. Wea. Forecasting, 33, 419–442.
Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data, J. Meteorol. Soc. Jpn., 82, 507–531.
Lien, G.-Y. and Coauthors, 2021: Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System. Mon. Wea. Rev., 149, 2171–2191.
Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046–2070.
Lin, S. J., 1997: A finite‐volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123, 1749–1762.
Lin, S. J., and R. B. Rood, 1997: An explicit flux‐ form semi‐Lagrangian shallow‐water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 2477–2498.
Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 22, 1065–1092.
Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849–1866.
Ruston, B., and S. Healy, 2021: Forecast impact of FORMOSAT-7/COSMIC-2 GNSS radio occultation measurements. Atmospheric Science Letters, 22, e1019.
Schreiner, W. S., and Coauthors, 2020: COSMIC-2 Radio Occultation Constellation: First Results. Geophysical Research Letters, 47, e2019GL086841.
Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139–4163.
Zhou, L., S.-J., Lin, J.-H., Chen, L. M. Harris, X., Chen, S. L. Rees, 2019: Toward Convective-Scale Prediction within the Next Generation Global Prediction System. Bull. Amer. Meteor. Soc., 102, 1225–1243.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2021-12-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明