參考文獻 |
References
[1]
C. E. Meacham and S. J. Morrison, "Tumor heterogeneity and cancer cell plasticity," Nature, vol. 501, no. 7467, pp. 328 - 337, 2013.
[2]
R. Fisher, L. Pusztai and C. Swanton, "Cancer heterogeneity: implications for targeted therapeutics," British Journal of Cancer, vol. 108, p. 479–485, 2013.
[3]
J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram and F. Bray, "Global Cancer Observatory: Cancer Today," International Agency for Research on Cancer, 2020. [Online]. Available: https://gco.iarc.fr/today. [Accessed 15 March 2021].
[4]
"The WHITE HOUSE. PRESIDENT BARACK OBAMA," 25 February 2016. [Online]. Available: https://obamawhitehouse.archives.gov/the-press-office/2016/02/25/fact-sheet-obama-administration-announces-key-actions-accelerate. [Accessed 15 March 2021].
[5]
D. Levenson, "American Association for Clinical Chemistry (AACC)," 01 November 2020. [Online]. Available: https://www.aacc.org/cln/articles/2020/november/a-new-era-for-liquid-biopsy. [Accessed 15 March 2021].
[6]
B. Zhou, K. Xu, X. Zheng, T. Chen, J. Wang, Y. Song, Y. Shao and S. Zheng, "Application of exosomes as liquid biopsy in clinical diagnosis," Signal Transduction and Targeted Therapy, vol. 5, no. 1, 2020.
[7]
A. Makler and W. Asghar, "Exosomal biomarkers for cancer diagnosis and patient monitoring," Expert Rev Mol Diagn, vol. 20, no. 4, pp. 387-400, 2020.
[8]
C.-h. Hong and Y.-c. Chen, "Clinical significance of exosomes as potential biomarkers in cancer," World Journal of Clinical Cases, vol. 7, no. 2, pp. 171-190, 2019.
[9]
Y. Xie, W. Dang, S. Zhang, W. Yue, L. Yang, X. Zhai, Q. Yan and J. Lu, "The role of exosomal noncoding RNAs in cancer," Molecular Cancer, vol. 18, no. 37, 2019.
[10]
W. Li, C. Li, T. Zhou, X. Liu, X. Liu, X. Li and D. Chen, "Role of exosomal proteins in cancer diagnosis," Molecular Cancer, vol. 16, no. 145, 2017.
[11]
A. Li, T. Zhang, M. Zheng, Y. Liu and Z. Chen, "Exosomal proteins as potential markers of tumor diagnosis," Journal of Hematology & Oncology, vol. 10, no. 175, 2017.
[12]
L.-h. Sun, D. Tian, Z.-c. Yang and J.-l. Li, "Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4," Scientific Reports, vol. 10, no. 8271, 2020.
[13]
S. Yokoyama, A. Takeuchi, S. Yamaguchi, Y. Mitani, T. Watanabe, K. Matsuda, T. Hotta, J. E. Shively and H. Yamaue, "Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction—Measurement by ELISA," Plos One, vol. 12, no. 8, 2017.
67
[14]
C. S. Kosack, A.-L. Page and P. R. Klatser, "World Health Organization," 26 June 2017. [Online]. Available: https://www.who.int/bulletin/volumes/95/9/16-187468/en/. [Accessed 15 March 2021].
[15]
H. Grosjean, "Nucleic Acids Are Not Boring Long Polymers of Only Four Types of Nucleotides: A Guided Tour," in DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, Landes Bioscience, 2009.
[16]
J. D. Watson and F. H. Crick, "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid," Nature, vol. 171, no. 4356, pp. 737-738, 1953.
[17]
H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore and J. Darnell, "Structure of Nucleic Acids," in Molecular Cell Biology, 4th ed., New York, W. H. Freeman, 2000.
[18]
M. Mitra, "Elements of RNA, its Techniques and Applications," American Journal of Current Microbiology, vol. 7, no. 1, pp. 34-39, 2019.
[19]
M. McCarty and O. T. Avery, "Studies on the chemical nature of the substance inducing transformation of pneumococcal types; effect of desoxyribonuclease on the biological activity of the transforming substance," Journal of Experimental Medicine, vol. 83, pp. 89-96, 1946.
[20]
A. G. Leslie, S. Arnott, R. Chandrasekaran and R. L. Ratliff, "Polymorphism of DNA double helices," J Mol Biol, vol. 143, no. 1, pp. 49-72, 1980.
[21]
R. Hardison, "B-Form, A-Form, and Z-Form of DNA.," 15 August 2020. [Online]. Available: https://bio.libretexts.org/@go/page/307 . [Accessed 15 March 2021].
[22]
W. Fuller, F. Hutchinson, M. Spencer and M. Wilkins, "Molecular and crystal structures of double-helical RNA: I. An X-ray diffraction study of fragmented yeast RNA and a preliminary double-helical RNA model," Journal of Molecular Biology, vol. 27, no. 3, pp. 507-512, 1967.
[23]
R. C. Lee, R. L. Feinbaum and V. J. Ambros, "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14," Cell, vol. 75, no. 5, pp. 843-854, 1993.
[24]
M. Ha and V. Kim, "Regulation of microRNA biogenesis," Nat Rev Mol Cell Biol, vol. 15, p. 509–524, 2014.
[25]
D. P. Bartel, "MicroRNAs: genomics, biogenesis, mechanism, and function," Cell, vol. 116, no. 2, pp. 281-297, 2004.
[26]
J. S. Mattick and I. V. Makunin, "Non-coding RNA," Human Molecular Genetics, vol. 15, no. 1, pp. R17-R29, 2006.
[27]
L.-A. MacFarlane and P. R. Murphy, "MicroRNA: biogenesis, function and role in cancer," Current Genomics, vol. 11, no. 7, pp. 537-561, 2010.
[28]
C. Chou, N. Chang, S. Shrestha, S. Hsu, Y. Lin, W. Lee, C. Yang, H. Hong, T. Wei, S. Tu, T. Tsai, S. Ho, T. Jian, H. Wu, P. Chen, N. Lin, H. Huang, T. Yang, C. Pai, C. Tai, W. Chen, C. Huang, C. Liu, S. Weng, K. Liao, W. Hsu and H. Huang, "miRTarBase 2020: updates to the experimentally
68
validated microRNA–target interaction database," Nucleic Acids Res, vol. 44, no. D1, pp. D239-D247, 2016.
[29]
Y. Peng and C. M. Croce, "The role of MicroRNAs in human cancer," Signal Transduction and Targeted Therapy, vol. 1, no. 15004, 2016.
[30]
G. Shafi, N. Aliya and A. Munshi, "MicroRNA signatures in neurological disorders," Can J Neurol Sci, vol. 37, no. 2, pp. 177-185, 2010.
[31]
R. R. Wong, N. Abd-Aziz, S. Affendi and C. Poh, "Role of microRNAs in antiviral responses to dengue infection," J Biomed Sci, vol. 27, no. 1, 2020.
[32]
A. Roberts, A. Lewis and C. Jopling, "The role of microRNAs in viral infection," Prog Mol Biol Transl Sci, vol. 102, pp. 101-139, 2011.
[33]
M. Cui, H. Wang, X. Yao, D. Zhang, Y. Xie, R. Cui and X. Zhang, "Circulating MicroRNAs in Cancer: Potential and Challenge," Front Genet, vol. 10, no. 626, 2019.
[34]
M. Wang, F. Yu, H. Ding, Y. Wang, P. Li and K. Wang, "Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer," Mol Ther Nucleic Acids, vol. 16, pp. 791-804, 2019.
[35]
S. Tan, L. Xia, P. Yi, Y. Han, L. Tang, Q. Pan, Y. Tian, S. Rao, L. Oyang, J. Liang, J. Lin, M. Su, Y. Shi, D. Cao, Y. Zhou and Q. Liao, "Exosomal miRNAs in tumor microenvironment," J Exp Clin Cancer Res, vol. 39, no. 1, 2020.
[36]
M. Tsukamoto, H. Iinuma, T. Yagi, K. Matsuda and Y. Hashiguchi, "Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer," Oncology, vol. 92, no. 6, pp. 360-370, 2017.
[37]
Q. Liu, Z. Yu, S. Yuan, W. Xie, C. Li, Z. Hu, Y. Xiang, N. Wu, L. Wu, L. Bai and Y. Li, "Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer," Oncotarget, vol. 8, no. 8, p. 13048–13058, 2017.
[38]
X. Li, Z. Ren, J. Tang and Q. Yu, "Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer," Cell Physiol Biochem, vol. 44, no. 5, pp. 1741-1748, 2017.
[39]
M. Lagos-Quintana, R. Rauhut, W. Lendeckel and T. Tuschl, "Identification of novel genes coding for small expressed RNAs," Science, vol. 294, no. 5593, pp. 853-858, 2001.
[40]
V. Jazbutyte and T. Thum, "MicroRNA-21: From cancer to cardiovascular disease," Curr Drug Targets, vol. 11, pp. 926-935, 2010.
[41]
C. You, L. Jin, Q. Xu, B. Shen, X. Jiao and X. Huang, "Expression of miR-21 and miR-138 in colon cancer and its effect on cell proliferation and prognosis," Oncology letters, vol. 17, no. 2, p. 2271–2277, 2019.
[42]
T. Wang, Y. Feng, H. Sun, L. Zhang, L. Hao, C. Shi, J. Wang, R. Li, X. Ran, Y. Su and Z. Zou, "miR-21 regulates skin wound healing by targeting multiple aspects of the healing process," Am
69
J Pathol, vol. 181, no. 6, pp. 1911-1920, 2012.
[43]
X. Yang, J. Wang, S. Guo, K. Fan, J. Li, Y. Wang, Y. Teng and X. Yang, "miR-21 Promotes Keratinocyte Migration and Re-epithelialization During Wound Healing," Int J Biol Sci, vol. 7, no. 5, pp. 685-690, 2011.
[44]
R. Saiki, S. Scharf, F. Faloona, K. Mullis and G. Horn, "Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia," Science, vol. 230, no. 4732, pp. 1350-1354, 1985.
[45]
L. S. Beese, V. Derbyshire and T. A. J. S. Steitz, "Structure of DNA polymerase I Klenow fragment bound to duplex DNA," Science, vol. 260, no. 5106, pp. 352-355, 1993.
[46]
R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis and H. A. Erlich, "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase," Science, vol. 239, p. 487–491, 1988.
[47]
"Polymerase Chain Reaction (PCR)," U.S. National Library of Medicine, 09 November 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/probe/docs/techpcr/. [Accessed 15 March 2021].
[48]
"Real-Time qRT-PCR," U.S. National Library of Medicine, 09 November 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/probe/docs/techqpcr/. [Accessed 15 March 2021].
[49]
J. Kuang, X. Yan, A. Genders, C. Granata and D. Bishop, "An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research," Plos One, vol. 13, no. 5, 2018.
[50]
M. L. Wong and J. F. Medrano, "Real-time PCR for mRNA quantitation," Biotechniques, vol. 39, no. 1, pp. 75-85, 2005.
[51]
M. J. Wacker and M. P. Godard, "Analysis of one-step and two-step real-time RT-PCR using SuperScript III," J Biomol Tech, vol. 16, no. 3, pp. 266-271, 2005.
[52]
M. J. Holden and L. Wang, "Quantitative Real-Time PCR: Fluorescent Probe Options and Issues," in Standardization and Quality Assurance in Fluorescence Measurements II, Berlin, Heidelberg, Springer, 2008, pp. 489-508.
[53]
T. D. Schmittgen, B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer and M. W. Reed, "Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods," Anal. Biochem., vol. 285, no. 2, p. 194–204, 2000.
[54]
M. S. Rajeevan, S. D. Vernon, N. Taysavang and E. R. Unger, "Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR," J Mol Diagn, vol. 3, no. 1, pp. 26-31, 2001.
[55]
S. A. Deepak, K. R. Kottapalli, R. Rakwal, G. Oros, K. S. Rangappa, H. Iwahashi, Y. Masuo and G. K. Agrawal, "Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes," Curr Genomics, vol. 8, no. 4, p. 234–251, 2007.
70
[56]
D.-K. Yang, C.-H. Kweon, B.-H. Kim, S.-I. Lim, S.-H. Kim, J.-H. Kwon and H.-R. Han, "TaqMan reverse transcription polymerase chain reaction for the detection of Japanese encephalitis virus," Journal of Veterinary Science, vol. 5, no. 4, p. 345–351, 2004.
[57]
C. J. Smith and A. M. Osborn, "Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology," FEMS Microbiology Ecology, vol. 67, pp. 6-20, 2009.
[58]
M. Labrenz, I. Brettar, R. Christen, S. Flavier, J. Bötel and M. G. Höfle, "Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic Sea," Appl Environ Microbiol, vol. 70, no. 8, pp. 4971-4979, 2004.
[59]
P. Chhalliyil, H. Ilves, S. A. Kazakov, S. J. Howard, B. H. Johnston and J. Fagan, "A Real-Time Quantitative PCR Method Specific for Detection and Quantification of the First Commercialized Genome-Edited Plant," Foods, vol. 9, no. 9, 2020.
[60]
M. A. A. Valones, R. L. Guimarães, L. A. C. Brandão, P. R. E. de Souza, A. d. A. T. Carvalho and S. Crovela, "Principles and applications of polymerase chain reaction in medical diagnostic fields: a review," Brazilian Journal of Microbiology, vol. 40, pp. 1-11, 2009.
[61]
H. Hartley, "Origin of the word ′protein′," Nature, vol. 168, 1951.
[62]
F. Sanger, "The terminal peptides of insulin," The Biochemical Journal, vol. 45, no. 5, pp. 563-574, 1949.
[63]
H. Muirhead and M. Perutz, "Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution," Nature, vol. 199, no. 4894, pp. 633-638, 1963.
[64]
J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff and D. C. Phillips, "A three-dimensional model of the myoglobin molecule obtained by x-ray analysis," Nature, vol. 181, no. 4610, pp. 662-666, 1958.
[65]
"A Structural View of Biology," RCSB Protein Data Bank, 18 April 2015. [Online]. Available: https://web.archive.org/web/20150418160606/http://www.rcsb.org/pdb/home/home.do. [Accessed 19 January 2021].
[66]
D. L. Nelson and M. M. Cox, Lehninger′s Principles of Biochemistry, 4th ed., New York: New York : W.H. Freeman, 2005, pp. 622-629.
[67]
F. Sanger, "The Arrangement of Amino Acids in Proteins," in Advances in Protein Chemistry, vol. 7, Elsevier, 1952, pp. 1-67.
[68]
L. Pauling, R. B. Corey and H. R. Branson, "The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain," Proc Natl Acad Sci USA, vol. 37, no. 4, pp. 205-211, 1951.
[69]
A. D. McNaught and A. Wilkinson, Eds., Compendium of Chemical Terminology (the Gold Book), 2nd ed., International Union of Pure and Applied Chemistry, 1997.
[70]
C. Branden and J. Tooze, Introduction to Protein Structure, New York: Garland, 1990.
71
[71]
J. M. Berg, J. L. Tymoczko and L. Stryer, "Quaternary Structure: Polypeptide Chains Can Assemble Into Multisubunit Structures," in Biochemistry, 5th ed., New York, W. H. Freeman, 2002.
[72]
N. Rifai, M. Gillette and S. Carrs, "Protein biomarker discovery and validation: the long and uncertain path to clinical utility," Nat Biotechnol, vol. 24, pp. 971-983, 2006.
[73]
A. K. Chan, D. C. Lockhart, W. von Bernstorff, R. A. Spanjaard, H. G. Joo, T. J. Eberlein and P. S. Goedegebuure, "Soluble MUC1 secreted by human epithelial cancer cells mediates immune suppression by blocking T-cell activation," International Journal of Cancer, vol. 82, pp. 721-772, 1999.
[74]
C. Kirmiz, B. Li, H. J. An, B. H. Clowers, H. K. Chew, K. S. Lam, A. Ferrige, R. Alecio, A. D. Borowsky, S. Sulaimon, C. B. Lebrilla and S. Miyamoto, "A serum glycomics approach to breast cancer biomarkers," Mol Cell Proteomics, pp. 43-45, 2007.
[75]
R. C. Bast, F. J. Xu, Y. H. Yu, S. Barnhill, Z. Zhang and G. B. Mills, "CA 125: the past and the future," Int J Biol Markers, vol. 13, pp. 179-187, 1998.
[76]
G. M. Clark, "Interpreting and integrating risk factors for patients with primary breast cancer," J Natl Cancer Inst Monogr, vol. 17, no. 2, 2001.
[77]
Z. Yu, X. Chen, L. Cui, H. Si, H. Lu and S. Liu, "Prediction of lung cancer based on serum biomarkers by gene expression programming methods," Asian Pac. J. Cancer Prev, vol. 15, p. 9367–9373, 2014.
[78]
B. Sandfeld-Paulsen, N. Aggerholm-Pedersen, R. Bæk, K. R. Jakobsen, P. Meldgaard, B. H. Folkersen, T. R. Rasmussen, K. Varming, M. M. Jørgensen and B. S. Sorensen, "Exosomal proteins as prognostic biomarkers in non-small cell lung cancer," Molecular oncology, vol. 10, no. 10, pp. 1595-1602, 2016.
[79]
S. A. Melo, L. B. Luecke, C. Kahlert, A. F. Fernandez, S. T. Gammon, J. Kaye, V. S. LeBleu, E. A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M. F. Fraga, D. Piwnica-Worms and R. Kalluri, "Glypican-1 identifies cancer exosomes and detects early pancreatic cancer," Nature, vol. 523, no. 7559, pp. 177-182, 2015.
[80]
C. Hall, L. Clarke, A. Pal, P. Buchwald, T. Eglinton, C. Wakeman and F. Frizelle, "A Review of the Role of Carcinoembryonic Antigen in Clinical Practice," Ann Coloproctol, vol. 35, no. 6, pp. 294-305, 2019.
[81]
M. J. Goldstein and E. P. Mitchell, "Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer," Cancer Invest., vol. 23, no. 4, pp. 338-351, 2005.
[82]
K. Björkman, S. Jalkanen, M. Salmi, H. Mustonen, T. Kaprio, H. Kekki, K. Pettersson, C. Böckelman and C. Haglund, "A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel," Sci Rep, vol. 11, 2021.
[83]
L.-H. Gam, "Breast cancer and protein biomarkers," World J Exp Med, vol. 2, no. 5, pp. 86-91,
72
2012.
[84]
M. Grunnet and J. B. Sorensen, "Carcinoembryonic antigen (CEA) as tumor marker in lung cancer," Lung Cancer, vol. 76, no. 2, pp. 138-143, 2012.
[85]
S. S. Sørensen and B. J. Mosgaard, "Combination of cancer antigen 125 and carcinoembryonic antigen can improve ovarian cancer diagnosis," Dan Med Bull, vol. 58, no. 11, 2011.
[86]
M. A. Gerber and S. N. Thung, "Carcinoembryonic antigen in normal and diseased liver tissue," Am J Pathol, vol. 92, no. 3, pp. 671-679, 1978.
[87]
S. K. Khoo and I. R. Mackay, "Carcinoembryonic antigen in serum in diseases of the liver and pancreas," J Clin Pathol, vol. 26, no. 7, pp. 470-475, 1973.
[88]
T. H. Weber and Y. Kerttula, "Carcinoembryonic antigen (CEA) in blood in cases of pneumonia," Scand J Infect Dis, vol. 18, no. 6, pp. 547-550, 1986.
[89]
I. Fukuda, M. Yamakado and H. Kiyose, "Influence of smoking on serum carcinoembryonic antigen levels in subjects who underwent multiphasic health testing and services," J Med Syst, vol. 22, no. 2, pp. 89-93, 1998.
[90]
J. Li, Y. Chen, X. Guo, L. Zhou, Z. Jia, Z. Peng, Y. Tang, W. Liu, B. Zhu, L. Wang and C. Ren, "GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer," J Cell Mol Med, vol. 21, no. 5, pp. 838-847, 2017.
[91]
R. S. Yalow and S. A. Berson, "Assay of plasma insulin in human subjects by immunological methods," Nature, vol. 184, pp. 1648-1649, 1959.
[92]
J. M. Walker and R. Rapley, Molecular Biomethods Handbook, Humana Press, 2008, pp. 375-376.
[93]
S. D. Gan and K. R. Patel, "Enzyme immunoassay and enzyme-linked immunosorbent assay," J Invest Dermatol, vol. 133, no. 9, 2013.
[94]
S. X. Leng, J. E. McElhaney, J. D. Walston, D. Xie, N. S. Fedarko and G. A. Kuchel, "ELISA and multiplex technologies for cytokine measurement in inflammation and aging research," J Gerontol A Biol Sci Med Sci, vol. 63, no. 8, pp. 879-884, 2008.
[95]
N. Aziz, P. Nishanian, R. Mitsuyasu, R. Detels and J. L. Fahey, "Variables that affect assays for plasma cytokines and soluble activation markers," Clinical and diagnostic laboratory immunology, vol. 6, no. 1, pp. 89-95, 1999.
[96]
C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica and G. M. Whitesides, "Paper-based ELISA," Angew Chem Int Ed Engl, vol. 49, no. 28, pp. 4771-4774, 2010.
[97]
J. C. Contreras-Naranjo, H.-J. Wu and . V. M. Ugaz, "Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine," Lab Chip, vol. 17, no. 21, pp. 3558-3577, 2017.
73
[98]
A. V. Vlassov, S. Magdaleno and R. Sette, "Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials," Biochim Biophys Acta, vol. 1820, no. 7, pp. 940-948, 2012.
[99]
I. V. Miller and T. G. P. Grunewald, "Tumour‐derived exosomes: Tiny envelopes for big stories," Biol Cell, vol. 107, no. 9, pp. 287-305, 2015.
[100]
J. C. Akers, D. Gonda, R. Kim, B. S. Carter and C. C. Chen, "Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies," J Neurooncol, vol. 113, no. 1, pp. 1-11, 2013.
[101]
M. Mathieu, L. Martin-Jaular, G. Lavieu and C. Théry, "Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication," Nature Cell Biology, vol. 21, pp. 9-17, 2019.
[102]
S. I. Buschow, E. N. Nolte-′t Hoen, G. van Niel, M. S. Pols, T. ten Broeke, M. Lauwen, F. Ossendorp, C. J. Melief, G. Raposo, R. Wubbolts, M. H. Wauben and W. Stoorvogel, "MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways," Traffic, vol. 10, no. 10, pp. 1528-1542, 2009.
[103]
G. Turturici, R. Tinnirello, G. Sconzo and F. Geraci, "Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages," Am J Physiol Cell Physiol, vol. 306, no. 7, pp. C621-C633, 2014.
[104]
K. M. McAndrews and R. Kalluri, "Mechanisms associated with biogenesis of exosomes in cancer," Mol Cancer, vol. 18, no. 1, 2019.
[105]
H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder and H. Lee, "New Technologies for Analysis of Extracellular Vesicles," Chem Rev, vol. 118, no. 4, pp. 1917-1950, 2018.
[106]
B. S. Batista, W. S. Eng, K. T. Pilobello, K. D. Hendricks-Munoz and L. K. Mahal, "Identification of a conserved glycan signature for microvesicles," J. Proteome Res, vol. 10, p. 4624–4633, 2011.
[107]
J. Kowal, J. Vigneron, P. Benaroch, N. Manel, L. F. Moita, C. Théry and G. Raposo, "Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles," J.Cell Sci, vol. 126, p. 5553–5565, 2013.
[108]
N. P. Hessvik and A. Llorente, "Current knowledge on exosome biogenesis and release," Cell Mol. Life Sci, vol. 75, p. 193–208, 2018.
[109]
W. M. Henne, H. Stenmark and S. D. Emr, "Molecular mechanisms of the membrane sculpting ESCRT pathway," Cold Spring Harb Perspect Biol, vol. 5, no. 9, 2013.
[110]
S. Atay, C. Gercel-Taylor, M. Kesimer and D. D. Taylor, "Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells," Exp Cell Res, vol. 317, no. 8, pp. 1192-1202, 2011.
[111]
T. Skotland, K. Sagini, K. Sandvig and A. Llorente, "An emerging focus on lipids in extracellular
74
vesicles," Adv Drug Deliv Rev, vol. 159, pp. 308-321, 2020.
[112]
M. Frydrychowicz, A. Kolecka-Bednarczyk, M. Madejczyk, S. Yasar and G. Dworacki, "Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer," Scand J Immunol, vol. 81, no. 1, pp. 2-10, 2015.
[113]
J. Conde-Vancells, E. Rodriguez-Suarez, N. Embade, D. Gil, R. Matthiesen, M. Valle, F. Elortza, S. C. Lu, J. M. Mato and J. M. Falcon-Perez, "Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes," J. Proteome Res, vol. 7, p. 5157–5166, 2008.
[114]
C. Subra, D. Grand, K. Laulagnier, A. Stella, G. Lambeau, M. Paillasse, P. De Medina, B. Monsarrat, B. Perret, S. Silvente-Poirot, M. Poirot and M. Record, "Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins," J. Lipid Res, vol. 51, p. 2105–2120, 2010.
[115]
L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal and M. J. Wood, "Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes," Nat. Biotechnol, vol. 29, pp. 341-345, 2011.
[116]
M. Colombo, G. Raposo and C. Théry, "Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles," Annu Rev Cell Dev Biol, vol. 30, pp. 255-289, 2014.
[117]
A. Y. Wu, K. Ueda and C. P. Lai, "Proteomic Analysis of Extracellular Vesicles for Cancer Diagnostics," Proteomics, vol. 19, no. 1-2, 2019.
[118]
C. Théry, L. Zitvogel and S. Amigorena, "Exosomes: composition, biogenesis and function," Nat Rev Immunol 2, pp. 569-579, 2002.
[119]
G. Raposo and W. Stoorvogel, "Extracellular vesicles: exosomes, microvesicles, and friends," J Cell Biol, vol. 200, no. 4, pp. 373-383, 2013.
[120]
G. Bellin, C. Gardin, L. Ferroni, J. C. Chachques, M. Rogante, D. Mitrečić, R. Ferrari and B. Zavan, "Exosome in Cardiovascular Diseases: A Complex World Full of Hope," Cells, vol. 8, no. 2, 2019.
[121]
S. Rastogi, V. Sharma, P. S. Bharti, K. Rani, G. P. Modi, F. Nikolajeff and S. Kumar, "The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis," Int J Mol Sci, vol. 22, no. 1, 2021.
[122]
W. Liu, X. Bai, A. Zhang, J. Huang, S. Xu and J. Zhang, "Role of Exosomes in Central Nervous System Diseases," Frontiers in Molecular Neuroscience, vol. 12, 2019.
[123]
W. Chang and J. Wang, "Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus," Cells, vol. 8, no. 8, 2019.
[124]
C. Castaño, A. Novials and M. Párrizas, "Exosomes and diabetes," Diabetes Metab Res Rev, vol. 35, no. 3, 2019.
[125]
C. Liu, J. Zhao, F. Tian, L. Cai, W. Zhang, Q. Feng, J. Chang, F. Wan, Y. Yang, B. Dai, Y. Cong,
75
B. Ding, J. Sun and W. Tan, "Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers," Nat Biomed Eng, vol. 3, pp. 183-193, 2019.
[126]
P. Sharma, S. Ludwig, L. Muller, C. S. Hong, J. M. Kirkwood, S. Ferrone and T. L. Whiteside, "Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma," J Extracell Vesicles, vol. 7, no. 1, 2018.
[127]
V. Domenyuk, Z. Zhong, A. Stark, N. Xiao, H. A. O′Neill, X. Wei, J. Wang, T. T. Tinder, S. Tonapi, J. Duncan, T. Hornung, A. Hunter, M. R. Miglarese, J. Schorr, D. D. Halbert, J. Quackenbush and G. Post, "Plasma Exosome Profiling of Cancer Patients by a Next Generation Systems Biology Approach," Sci Rep, vol. 7, 2017.
[128]
T. Huang and C. X. Deng, "Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers," Int J Biol Sci, vol. 15, no. 1, pp. 1-11, 2019.
[129]
S. Gurunathan, M. H. Kang, M. Jeyaraj, M. Qasim and J. H. Kim, "Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes," Cells, vol. 8, no. 4, 2019.
[130]
M. Lafitte, C. Lecointre and S. Roche, "Roles of exosomes in metastatic colorectal cancer," Am J Physiol Cell Physiol, vol. 317, p. C869–C880, 2019.
[131]
L. Bracci, F. Lozupone and I. Parolini, "The role of exosomes in colorectal cancer disease progression and response to therapy," Cytokine & Growth Factor Reviews, vol. 51, pp. 84-91, 2020.
[132]
L. Ruiz-López, I. Blancas, J. M. Garrido, N. Mut-Salud, M. Moya-Jódar, A. Osuna and F. Rodríguez-Serrano, "The role of exosomes on colorectal cancer: A review," J Gastroenterol Hepatol, vol. 33, no. 4, pp. 792-799, 2018.
[133]
P. Goodarzi, B. Larijani, S. Alavi-Moghadam, A. Tayanloo-Beik, F. Mohamadi-Jahani, N. Ranjbaran, M. Payab, K. Falahzadeh, M. Mousavi and B. Arjmand, "Mesenchymal Stem Cells-Derived Exosomes for Wound Regeneration," Adv Exp Med Biol, vol. 1119, pp. 119-131, 2018.
[134]
B. F. Hettich, M. B.-Y. Greenwald, S. Werner and J.-C. Leroux, "Exosomes for Wound Healing: Purification Optimization and Identification of Bioactive Components," Adv. Sci, vol. 7, 2020.
[135]
J. Xu, S. Bai, Y. Cao, L. Liu, Y. Fang, J. Du, L. Luo, M. Chen, B. Shen and Q. Zhang, "miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice," Diabetes Metab Syndr Obes, vol. 13, pp. 1259-1270, 2020.
[136]
S. Gao, T. Chen, Y. Hao, F. Zhang, X. Tang, D. Wang, Z. Wei and J. Qi, "Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression," Stem Cell Res Ther, vol. 11, no. 56, 2020.
[137]
A. Cheruvanky, H. Zhou, T. Pisitkun, J. B. Kopp, M. A. Knepper, P. S. Yuen and R. A. Star,
76
"Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator," Am J Physiol Renal Physiol, vol. 292, no. 5, pp. F1657-F1661, 2007.
[138]
C. Théry, S. Amigorena, G. Raposo and A. Clayton, "Isolation and characterization of exosomes from cell culture supernatants and biological fluids," Curr Protoc Cell Biol, 2006.
[139]
J. V. Deun, P. Mestdagh, R. Sormunen, V. Cocquyt, K. Vermaelen, J. Vandesompele, M. Bracke, O. D. Wever and A. Hendrix, "The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling," J. Extracell. Vesicles, vol. 3, 2014.
[140]
E. I. B. L. T. B. A. B. L. Kenneth W Witwer, J. Lötvall, E. N. N.-′. Hoen, M. G. Piper, S. Sivaraman, J. Skog, C. Théry, M. H. Wauben and F. Hochberg, "Standardization of sample collection, isolation and analysis methods in extracellular vesicle research," J. Extracell. Vesicles, vol. 2, 2013.
[141]
P. Li, M. Kaslan, S. H. Lee, J. Yao and Z. Gao, "Progress in exosome isolation techniques," Theranostics, vol. 7, no. 3, pp. 789-804, 2017.
[142]
P. E. Chugh, S.-H. Sin, S. Ozgur, D. H. Henry, P. Menezes, J. Griffith, J. J. Eron, B. Damania and D. P. Dittmer, "Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies," Plos Pathogens, vol. 9, no. 7, 2013.
[143]
A. Clayton, J. Court, H. Navabi, M. Adams, M. D. Mason, J. A. Hobot, G. R. Newman and B. Jasani, "Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry," J Immunol Methods, vol. 247, no. 1-2, pp. 136-174, 2001.
[144]
E. Zeringer, T. Barta, M. Li and A. V. Vlassov, "Strategies for isolation of exosomes," Cold Spring Harb Protoc, vol. 4, pp. 319-323, 2015.
[145]
L. Dong, R. C. Zieren, K. Horie, C.-J. Kim, E. Mallick, Y. Jing, M. Feng, M. D. Kuczler, J. Green, S. R. Amend, K. W. Witwer, T. M. d. Reijke, Y.-K. Cho, K. J. Pienta and W. Xue, "Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium," J Extracell Vesicles, vol. 10, no. 2, 2020.
[146]
R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. P. Ferguson, P. Hole, B. Carr, C. W. G. Redman, A. L. Harris, P. J. Dobson, P. Harrison and I. L. Sargent, "Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 7, no. 6, pp. 780-788, 2011.
[147]
V. Filipe, A. Hawe and W. Jiskoot, "Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates," Pharmaceutical Research, vol. 27, no. 5, pp. 796-810, 2010.
[148]
R. Szatanek, M. Baj-Krzyworzeka, J. Zimoch, M. Lekka, M. Siedlar and J. Baran, "The Methods of Choice for Extracellular Vesicles (EVs) Characterization," Int J Mol Sci, vol. 18, no. 6, 2017.
[149]
D. McMullan, "Scanning electron microscopy 1928–1965," Scanning, vol. 17, pp. 175-185, 1995.
77
[150]
J. M. Hyosun Choi, "Structural Analysis of Exosomes Using Different Types of Electron Microscopy," Applied Microspcopy, vol. 47, no. 3, pp. 171-175, 2017.
[151]
D. Enderle, A. Spiel, C. M. Coticchia, E. Berghoff, R. Mueller, M. Schlumpberger, M. Sprenger-Haussels, J. M. Shaffer, E. Lader, J. Skog and M. Noerholm, "Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method," Plos One, vol. 10, no. 8, 2015.
[152]
C. Théry, M. Ostrowski and E. Segura, "Membrane vesicles as conveyors of immune responses," Nat. Rev. Immunol., vol. 9, no. 8, pp. 581-593, 2009.
[153]
Y. Wu, W. Deng and D. J. Klinke, "xosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers," Analyst, vol. 140, no. 19, pp. 6631-6642, 2015.
[154]
B. György, T. G. Szabó, M. Pásztói, Z. Pál, P. Misják, B. Aradi, V. László, E. Pállinger, E. Pap, A. Kittel, G. Nagy, A. Falus and E. I. Buzás, "Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles," Cell Mol Life Sci, vol. 16, pp. 2667-2688, 2011.
[155]
H. Shao, J. Chung, L. Balaj, A. Charest, D. D. Bigner, B. S. Carter, F. H. Hochberg, X. O. Breakefield, R. Weissleder and H. Lee, "Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy," Nat Med, vol. 18, no. 12, pp. 1835-1840, 2012.
[156]
L. C. Fowke, "Transmission and Scanning Electron Microscopy for Plant Protoplasts, Cultured Cells and Tissues," in Plant Cell, Tissue and Organ Culture, Berlin, Heidelberg, Springer, 1995, pp. 229-238.
[157]
M. J. Karnovsky, "A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy," Journal of Cell Biology, vol. 27, no. 2, pp. 1A-149A, 1965.
[158]
K. A. Kondratov, T. A. Petrova, V. Y. Mikhailovskii, A. N. Ivanova, A. A. Kostareva and A. V. Fedorov, "A study of extracellular vesicles isolated from blood plasma conducted by low-voltage scanning Electron microscopy," Cell and Tissue Biology, vol. 11, pp. 181-190, 2017.
[159]
B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Mineola: Courier Dover, 2000.
[160]
B. F. Andreasi, G. Arcovito, M. De Spirito, A. Mordente and G. Martorana, "Self-similarity properties of alphacrystallin supramolecular aggregates," Biophys J, vol. 69, no. 6, pp. 2720-2727, 1995.
[161]
T. Parasassi, M. D. Spirito, G. Mei, R. Brunelli, G. Greco, L. Lenzi, G. Maulucci, E. Nicolai, M. Papi, G. Arcovito, S. C. E. Tosatto and F. Ursini, "Low density lipoprotein misfolding and amyloidogenesis," FASEB J, vol. 22, no. 7, pp. 2350-2356, 2008.
[162]
G. Maulucci, M. D. Spirito, G. Arcovito, F. Boffi, A. C. Castellano and G. Briganti, "Particle size distribution in DMPC vesicles solutions undergoing different sonication times," Biophys J, vol. 88, no. 5, pp. 3545-3550, 2005.
78
[163]
V. Filipe, A. Hawe and W. Jiskoot, "Critical evaluation of Nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates," Pharmaceut Res, vol. 27, no. 5, p. 796–810, 2010.
[164]
M. Papi, G. Arcovito, M. De Spirito, M. Vassalli and B. Tiribilli, "Fluid viscosity determination by means of uncalibrated atomic force microscopy cantilevers," Appl Phys Lett, vol. 88, no. 19, 2006.
[165]
M. Papi, G. Maulucci, G. Arcovito, P. Paoletti, M. Vassalli and M. De Spirito, "Detection of microviscosity by using uncalibrated atomic force microscopy cantilevers," Appl Phys Lett, vol. 93, no. 12, 2008.
[166]
F. Momen-Heravi, L. Balaj, S. Alian, J. Tigges, V. Toxavidis, M. Ericsson, R. J. Distel, A. R. Ivanov, J. Skog and W. P. Kuo, "Alternative methods for characterization of extracellular vesicles," Front Physiol, vol. 3, no. 354, 2012.
[167]
K. M. McKinnon, "Flow Cytometry: An Overview," Curr Protoc Immunol, vol. 120, pp. 5.1.1-5.1.11, 2018.
[168]
J. L. Zamora and H. C. Aguilar, "Flow virometry as a tool to study viruses," Methods, Vols. 134-135, p. 87–97, 2018.
[169]
J. Picot, C. L. Guerin, V. K. C. Le and C. M. Boulanger, "Flow cytometry: retrospective, fundamentals and recent instrumentation," Cytotechnology, vol. 64, no. 2, pp. 109-130, 2012.
[170]
A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, "Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices," Anal. Chem., vol. 82, no. 1, pp. 3-10, 2010.
[171]
C. Chen, B.-R. Lin, H.-K. Wang, S.-T. Fan, M.-Y. Hsu and C.-M. Cheng, "Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles," Microfluidics and Nanofluidics, vol. 16, p. 849–856, 2014.
[172]
C.-M. Cheng, A. Martinez, J. Gong, C. Mace, S. Phillips, E. Carrilho, K. Mirica and G. Whitesides, "Paper‐based ELISA," Clinical Analytics, vol. 48, no. 8, pp. 4771-4774, 2010.
[173]
C. Schrader, A. Schielke, L. Ellerbroek and R. Johne, "PCR inhibitors - occurrence, properties and removal," J Appl Microbiol, vol. 113, no. 5, pp. 1014-1026, 2012.
[174]
Y. H. Hsiao and C. Chen, "Paper-based for isolation of extracellular vesicles," Methods Mol. Biol., vol. 1660, pp. 43-54, 2017.
[175]
M.-Y. Hsu, C.-C. Chiu, J.-Y. Wang, C.-T. Huang, Y.-F. Huang, J.-C. Liou, C. Chen, H.-C. Chen and C.-M. Cheng, "Paper-based microfluidic platforms for understanding the role of exosomes in the pathogenesis of major blindness-threatening diseases," Nanomaterials (Basel), vol. 8, no. 5, 2018.
[176]
C.-h. Lai, Three-dimensional paper-based exosomal nucleic acid extraction device for detection
79
of exosomes and exosomal miRNAs released by cancer cell cultured in different microenvironment, Taiwan, 2020.
[177]
M. Lee, J.-J. Ban, W. Im and M. Kim, "Influence of storage condition on exosome recovery," Biotechnology and Bioprocess Engineering, vol. 21, pp. 299-304, 2016.
[178]
T. H. Nguyen and M. Elimelech, "Plasmid DNA Adsorption on Silica: Kinetics and Conformational Changes in Monovalent and Divalent Salts," Biomacromolecules, vol. 8, no. 1, pp. 24-32, 2007.
[179]
X. Li, J. Zhang and H. Gu, "Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles," Langmuir, vol. 27, no. 10, pp. 6099-6106, 2011.
[180]
K. A. Melzak, C. S. Sherwood, R. F. B. Turner and C. A. Haynes, "Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions," Journal of Colloid and Interface Science, vol. 181, no. 2, pp. 635-644, 1996.
[181]
W. P. Hu, Y. C. Chen and W. Y. Chen, "Improve sample preparation process for miRNA isolation from the culture cells by using silica fiber membrane," Sci Rep, vol. 10, 2020.
[182]
E. J. Mulholland, N. Dunne and H. O. McCarthy, "MicroRNA as Therapeutic Targets for Chronic Wound Healing," Mol Ther Nucleic Acids, vol. 8, pp. 46-55, 2017. |