博碩士論文 104283603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.133.130.70
姓名 林復慶(Phuc Khanh Lam)  查詢紙本館藏   畢業系所 化學學系
論文名稱 通過機械力化學法合成類沸石-咪唑骨架材料-90(ZIF-90)及其應用探討
(Study on the Application of Mechanochemistry for Zeolitic Imidazolate Framework-90 (ZIF-90))
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-31以後開放)
摘要(中) 本篇論文分成兩部分:
近年來奈米金屬粒子儼然成為材料領域最熱門的研究之一,主要是因為其表面積大的優勢在相催化,氣體儲存與表面增強拉曼散射的應用上相當好的表現。已有報導指出使用金屬有機骨架材料(Metal-organic Frameworks, MOFs) 包覆奈米金屬粒子,不僅可以減少昂貴催化劑損失防止金屬粒子聚集降低催化活性,同時也可以利用外在的孔洞性質去做選擇性催化。然而,目前主要合成Metal@MOF 材料方法大多需要有機溶劑,高溫,高壓或是長時間的反應過程,此類的反應條件相當耗能且不環保,所以開發一個更有效、對環境更友善的合成方法是亟需克服的問題,同時此法課已為後續工業應用方面帶來可觀的經濟效益。因此,本研究課題希望能在Metal@MOF材料的合成中,提供一個快速反應且使用溫和溶劑的合成環境。因此,本論文 第一部份 利用新穎 特別 且有效 的 機械 力化學 法(Mechanochemistry)球磨合成Metal@MOF,其中 Pd@ZIF-90 應用在表面增強拉曼散射光譜的散射效果最好,相較於 Au@ZIF-90 的21.2ppm,其可以偵測到甲苯蒸氣濃度為10.6 ppm。
本篇論文第二部分研究主題為透過機械力化學法,利用微量水輔助方式快速研磨合成類沸石-咪唑骨架材料-90 (Zeolitic Imidazolate Framework 90; ZIF-90) 包覆蛋白質。酵素與骨架材料的結合的複合材料在生物催化上相當具有潛力。本實驗室 2019 年成功透過機械力化學法的有機溶液輔助研磨反應快速合成金屬有機骨架材料包覆蛋白質。由於反應需要有機溶液輔助研磨,所以會讓蛋白質減少催化活性。因此,希望能在 Enzyme@MOF材料的合成中,提供一個快速反應且使用水輔助研磨反應,可以讓蛋白質減少損失催化活性。
摘要(英) There are two parts in my dissertation as shown below
Part I: Green and Rapid Encapsulation of SERS-active Metal Nanoparticles in MOF matrices via Liquid-assisted Grinding
Noble metal nanoparticles have attracted wide attentions due to its great potential applications in heterogeneous atalysis, hydrogen storage, and Surface Enhanced Raman Spectroscopy (SERS) techniques. It is reported that the encapsulation of metal nanoparticles into Metal-organic Frameworks (MOFs) not only prevents the oxidation and agglomeration of nanoparticles but also enhances the selectivity of chemicals transferring through material apertures in catalyzing process. Most of the strategies reported on metal nanoparticles encapsulation was solvothermal methods that required bulk organic solvents, high temperature or pressure and considerable reaction time. Due to this fact, it is necessary to find an alternative method for embedding metal nanoparticles into MOFs that more effective, environmentally-friendly and energy reduction. Therefore, we successfully applied mechanochemical method in embedding metal nanoparticles such as gold and palladium into MOFs of Zeolitic Imidazolate Framework 90(ZIF-90) via mechanochemistry, ZIFs- a sub group of MOFs, and it is so called (Metal@ZIF-90). We further used Metal@MOFs composites as the SERS substrate for the detection of hazardous chemicals, i.e., toluene. The sample of Pd@ZIF-90 shows more sensitive to toluene vapor at 10.6 ppm comparing to Au@ZIF-90 at 21.2 ppm in the value of LOD (limit of detection).
Part II: Protein-Assisted Assembly of Zeolitic Imidazolate Framework 90 (ZIF-90) via Mechanochemitry
In order to enhance the durability and stability of biomacromolecules, normally the immobilization methods will be performed as well as the biological functions also maintained under a wide range of catalyzing conditions. Recently, our lab had successfully encapsulating enzymes in MOFs via mechanochemical strategy using trace amounts of organic solvents. However, the biological activity of enzymes significantly decreased with the presence of organic solvent. For this reason, the second part of my dissertation is about rapid encapsulation of enzymes into ZIF-90 by Mechanochemistry with water-assisted while maintaining the enzyme biological function. we aim to study a mechanochemical synthesis of encapsulated enzymes in MOFs assisting a trace amounts of water as solvent that can minimize the influence of solvent on the enzyme biological activity and also understand the mechanism by encapsulation of enzymes with different isoelectric points.
關鍵字(中) ★ 奈米金屬粒子
★ 金屬有機骨架材料
★ 機械力化學法
★ 類沸石-咪唑骨架材料-90
★ 酵素
★ 表面增 強拉曼散射光譜
關鍵字(英) ★ Metal nanoparticles
★ Metal-organic Frameworks
★ Mechanochemical method
★ Zeolitic Imidazolate Framework 90
★ Enzyme
★ Surface Enhanced Raman Spectroscopy
論文目次 中文摘要 ··················································································· I
Abstract ··················································································· III
致謝詞 ···················································································· V
目錄 ······················································································ VI
圖目錄 ··················································································· XI
表目錄 ·················································································· XV
第1章 緒論 ......................................................................................................... 1
1-1 金屬有機骨架材料 (Metal-organic frameworks) .................................... 1
1-2 類沸石-咪唑骨架材料(Zeolitic Imidazolate Frameworks) ...................... 5
1-3 類沸石-咪唑骨架材料-90/8 ...................................................................... 7
1-4 奈米金屬粒子 ............................................................................................ 8
1-4-1 物理方法 (Physical methods) ............................................................ 9
1-4-1-1 氣體蒸汽法 (Gas Evaporation Method) ..................................... 9
1-4-1-2 氣液固生長法 (Vapor Liquid Solid Growth) .............................. 9
1-4-1-3 機械球磨法 (Ball Milling) .......................................................... 9
1-4-1-4 雷射剝削法 (Laser Ablation Technique) .................................. 10
1-4-2 化學方法 (Chemical Methods) ........................................................ 10
1-4-2-1 氧化還原法 (Redox Method) .................................................... 11
1-4-2-2 光化學法 (Photochemical Method) .......................................... 11
1-4-2-3 聲波化學法 (Ultrasonic Irradidation Method) .......................... 11
1-4-2-4 溶膠凝膠法 (Sol Gel Method) .................................................. 12
1-4-2-5 微乳化法之逆微胞法 (Micro Emulsion Synthesis) ................. 12
1-4-2-6 電化學法 (Electrochemical Method) ........................................ 12
1-5 表面增強拉曼光譜(Surface-enhanced Raman spectroscopy) ........... 13
1-6 甲苯 (Toluene) ......................................................................................... 14
1-7 機械力化學法 (Mechanochemistry) ....................................................... 15
1-8 固定化酵素 (Immobilized Enzyme) ....................................................... 17
1-9 過氧化氫酶 (Catalase, Cat) .................................................................... 20
1-10 研究動機 (Experiment Motivation) ...................................................... 22
第2章 實驗部分 ............................................................................................... 25
2-1 實驗藥品 .................................................................................................. 25
2-2 實驗儀器與設備 ...................................................................................... 26
2-2-1 實驗合成設備 ................................................................................... 26
2-2-2 實驗鑑定儀器 ................................................................................... 27
2-3 實驗儀器之原理 ...................................................................................... 27
2-3-1 中量快速球磨機 (Ball Mill Instrument).......................................... 27
2-3-2 X射線粉末繞射儀 (Powder X-ray Diffraction;PXRD) ............... 29
2-3-3 場發掃描式電子顯微鏡 (Field-emission Scanning Electron
Microscope;FE-SEM) ............................................................................... 30
2-3-4 穿透式電子顯微鏡 (Transmission Electron Microscope;TEM) .. 31
2-3-5 紫外線可見光吸收光譜儀 (UV-Visible Spectrophotometer) ......... 32
2-3-6 Zeta電位分析儀 (Zeta Potential Analyzer)...................................... 32
2-3-7 偵測蛋白質的濃度 (Bradford Assay) ............................................. 34
2-3-8 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation in Xylenol orange
assay, FOX assay) ......................................................................................... 35
2-3-9 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) .................... 36
2-4 實驗步驟 .................................................................................................. 40
2-4-1 金奈米粒子 Au (PVP) 的合成法 .................................................... 40
2-4-2 鈀奈米粒子 Pd (PVP) 的合成法 ..................................................... 41
2-4-3 機械球磨法合成 ZIF-90 ................................................................... 41
2-4-4 機械球磨法合成 Metal@ZIF-90 ...................................................... 42
2-4-5 機械球磨法合成 CAT@ZIF-90 ........................................................ 42
2-4-6 機械球磨法合成 Enzyme@ZIF-90 .................................................. 42
2-4-7 原位創新合成 CAT@ZIF-90 ............................................................ 43
2-4-8 原位創新合成 Lys@ZIF-90 ............................................................. 43
2-4-9 類沸石咪唑骨架-90包覆過氧化氫酶材料(CAT@ZIF-90)的活性測
試 .................................................................................................................. 44
2-4-10 添加蛋白酶(Proteinase K)的抑制測試 .......................................... 44
第3章 結果與討論–機械力化學法合成 ZIF-90和Metal@ZIF-90 ............ 45
3-1 機械球磨合成 ZIF-90 .............................................................................. 45
3-2 機械球磨合成Au@ZIF-90 ..................................................................... 48
3-3 機械球磨合成 Pd@ZIF-90 ..................................................................... 55
3-4 Metal@ZIF-90於表面增強拉曼散射之探討 ......................................... 61
第4章 結論–機械力化學法合成ZIF-90和 Metal@ZIF-90 ........................ 63
第5章 結果與討論–機械力化學法合成 Enzyme@ZIF-90 ......................... 64
5-1 水輔助機械力化學法合成 CAT@ZIF-90結果之討論 ......................... 64
5-2 機械力化學法的水輔助研磨反應快速合成 Enzyme@ZIF-90結果之討論 .................................................................................................................. 66
5-3 機械力化學法的乙醇輔助研磨反應快速合成 Enzyme@ZIF-90結果之
討論 .................................................................................................................. 68
5-4 原位創新合成 Enzyme@ZIF-90結果之討論 ........................................ 69
5-5 機械力化學法的水輔助研磨反應快速合成 Enzyme@ZIF-90於界面電位之討論.......................................................................................................... 70
第6章 結論–機械力化學法合成 Enzyme@ZIF-90 ..................................... 75
第7章 參考文獻 ............................................................................................... 76
參考文獻 1. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
2. Kitagawa, S.; Kitaura, R.; Noro, S.-i., Functional Porous Coordination Polymers. Angewandte Chemie International Edition 2004, 43 (18), 2334-2375.
3. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to metal–organic frameworks. Chemical reviews 2012, 112 (2), 673-674.
4. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
5. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
6. Everett, D., Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem 1972, 31 (4), 577-638.
7. Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F., Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chemical Society Reviews 2013, 42 (24), 9304-9332.
8. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y., Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 2005, 436 (7048), 238-241.
9. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723.
10. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
11. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.
12. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
13. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F., Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews 2015, 44 (19), 6804-6849.
14. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials 2010, 9 (2), 172-178.
15. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
16. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
17. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
18. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
19. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457.
20. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials 2017, 16 (2), 220-224.
21. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angewandte Chemie International Edition 2013, 52 (10), 2688-2700.
22. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
23. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
24. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
25. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
26. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
27. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
28. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
29. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
30. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 2008, 319 (5865), 939-943.
31. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C., Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews 2012, 41 (1), 413-447.
32. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
33. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191.
34. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129 (17), 5314-5315.
35. Han, S. S.; Choi, S.-H.; Goddard, W. A., Improved H2 Storage in Zeolitic Imidazolate Frameworks Using Li+, Na+, and K+ Dopants, with an Emphasis on Delivery H2 Uptake. The Journal of Physical Chemistry C 2011, 115 (8), 3507-3512.
36. Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal 2010, 16 (5), 1560-1571.
37. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 2011, 47 (37), 10275-10277.
38. Song, Q.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science 2012, 5 (8), 8359-8369.
39. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
40. Wee, L. H.; Lescouet, T.; Ethiraj, J.; Bonino, F.; Vidruk, R.; Garrier, E.; Packet, D.; Bordiga, S.; Farrusseng, D.; Herskowitz, M.; Martens, J. A., Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. ChemCatChem 2013, 5 (12), 3562-3566.
41. Vasconcelos, I. B.; Silva, T. G. d.; Militão, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances 2012, 2 (25), 9437-9442.
42. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.
43. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
44. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
45. Fendler, J. H., Atomic and molecular clusters in membrane mimetic chemistry. Chemical Reviews 1987, 87 (5), 877-899.
46. Henglein, A., Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews 1989, 89 (8), 1861-1873.
47. Ozin, G. A., Nanochemistry: synthesis in diminishing dimensions. Advanced Materials 1992, 4 (10), 612-649.
48. Yatsuya, S.; Kasukabe, S.; Uyeda, R., Formation of ultrafine metal particles by gas-evaporation technique — Aluminum in helium. Journal of Crystal Growth 1974, 24-25, 319-322.
49. Keisaku, K., The Study of Metal Colloids Produced by Means of Gas Evaporation Technique. II. Reaction of Metal Sols in Organic Solvents. Bulletin of the Chemical Society of Japan 1984, 57 (6), 1683-1684.
50. Takeuchi, Y.; Ida, T.; Kimura, K., Colloidal Stability of Gold Nanoparticles in 2-Propanol under Laser Irradiation. The Journal of Physical Chemistry B 1997, 101 (8), 1322-1327.
51. Keisaku, K.; Shunji, B., The Study of Metal Colloids Produced by Means of Gas Evaporation Technique. I. Preparation Method and Optical Properties in Ethanol. Bulletin of the Chemical Society of Japan 1983, 56 (12), 3578-3584.
52. Kimura, K., Metal Colloids Produced by Means of Gas Evaporation Technique. IV. Size Distribution of Small Mg and In Particles. Bulletin of the Chemical Society of Japan 1987, 60 (9), 3093-3097.
53. Naoki, S.; Keisaku, K., Metal Colloids Produced by Means of Gas Evaporation Technique. V. Colloidal Dispersion of Au Fine Particles to Hexane, Poor Dispersion Medium for Metal Sol. Bulletin of the Chemical Society of Japan 1989, 62 (6), 1758-1763.
54. Hu, J.; Odom, T. W.; Lieber, C. M., Chemistry and Physics in One Dimension:  Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research 1999, 32 (5), 435-445.
55. Rak, M. J.; Friščić, T.; Moores, A., Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions 2014, 170 (0), 155-167.
56. Lin, H.; Qin, L. Z.; Hong, H.; Li, Q., Preparation of Starch Nanoparticles via High-Energy Ball Milling. Journal of Nano Research 2016, 40, 174-179.
57. Fojtik, A.; Henglein, A., Laser ablation of films and suspended particles in a solvent: formation of cluster and colloid solutions. Berichte der Bunsen-Gesellschaft - Physical Chemistry Chem. Phys. 1993, 97, 252-252.
58. Neddersen, J.; Chumanov, G.; Cotton, T. M., Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids. Appl. Spectrosc. 1993, 47 (12), 1959-1964.
59. Jeon, J. S.; Yeh, C. S., Studies of silver nanoparticles by laser ablation method. Journal of the Chinese Chemical Society 1998, 45 (6), 721-726.
60. Wu, K. T.; Yao, Y. D.; Wang, C. R. C.; Chen, P. F.; Yeh, E. T., Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid. Journal of Applied Physics 1999, 85 (8), 5959-5961.
61. Yeh, M.-S.; Yang, Y.-S.; Lee, Y.-P.; Lee, H.-F.; Yeh, Y.-H.; Yeh, C.-S., Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol. The Journal of Physical Chemistry B 1999, 103 (33), 6851-6857.
62. Mafuné, F.; Kohno, J.-y.; Takeda, Y.; Kondow, T.; Sawabe, H., Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. The Journal of Physical Chemistry B 2000, 104 (39), 9111-9117.
63. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry 1995, 67 (4), 735-743.
64. Esumi, K.; Wakabayashi, M.; Torigoe, K., Preparation of colloidal silverpalladium alloys by UV-irradiation in mixtures of acetone and 2-propanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 109, 55-62.
65. Henglein, A.; Meisel, D., Radiolytic Control of the Size of Colloidal Gold Nanoparticles. Langmuir 1998, 14 (26), 7392-7396.
66. Yonezawa, Y.; Sato, T.; Ohno, M.; Hada, H., Photochemical formation of colloidal metals. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1987, 83 (5), 1559-1567.
67. Nagata, Y.; Watananabe, Y.; Fujita, S.-i.; Dohmaru, T.; Taniguchi, S., Formation of colloidal silver in water by ultrasonic irradiation. Journal of the Chemical Society, Chemical Communications 1992, (21), 1620-1622.
68. Arul Dhas, N.; Cohen, H.; Gedanken, A., In Situ Preparation of Amorphous Carbon-Activated Palladium Nanoparticles. The Journal of Physical Chemistry B 1997, 101 (35), 6834-6838.
69. Lisiecki, I.; Pileni, M. P., Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society 1993, 115 (10), 3887-3896.
70. Chang, C.-L.; Fogler, H. S., Controlled Formation of Silica Particles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Microemulsions. Langmuir 1997, 13 (13), 3295-3307.
71. Chen, D.-H.; Wu, S.-H., Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chemistry of Materials 2000, 12 (5), 1354-1360.
72. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society 1994, 116 (16), 7401-7402.
73. Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., Gold Nanorods:  Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101 (34), 6661-6664.
74. Xu, X.; Li, H.; Hasan, D.; Ruoff, R.; Wang, A.; Fan, D. L., Plasmonics: Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis (Adv. Funct. Mater. 35/2013). Advanced Functional Materials 2013, 23.
75. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C 2007, 111 (37), 13794-13803.
76. Blackie, E. J.; Le Ru, E. C.; Etchegoin, P. G., Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society 2009, 131 (40), 14466-14472.
77. Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W., The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 2009, 11 (3), 418-426.
78. Strobridge, F. C.; Judaš, N.; Friščić, T., A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal–organic materials. CrystEngComm 2010, 12 (8), 2409-2418.
79. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
80. Do, J.-L.; Friščić, T., Mechanochemistry: A Force of Synthesis. ACS Central Science 2017, 3 (1), 13-19.
81. Mottillo, C.; Friščić, T., Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules 2017, 22 (1), 144.
82. Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Friščić, T., Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie International Edition 2010, 49 (50), 9640-9643.
83. Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L., Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chemical Science 2015, 6 (3), 1645-1649.
84. Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, R. E.; Halasz, I.; Friščić, T., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nature Communications 2015, 6 (1), 6662.
85. Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E., Toward Greener Nanosynthesis. Chemical Reviews 2007, 107 (6), 2228-2269.
86. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
87. Messing, R. A., Chapter 1 - INTRODUCTION AND GENERAL HISTORY OF IMMOBILIZED ENZYMES. In Immobilized Enzymes for Industrial Reactors, Messing, R. A., Ed. Academic Press: 1975; pp 1-10.
88. Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
89. Brady, D.; Jordaan, J., Advances in enzyme immobilisation. Biotechnology letters 2009, 31 (11), 1639-1650.
90. Chen, Y.; Lykourinou, V.; Hoang, T.; Ming, L.-J.; Ma, S., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry 2012, 51 (17), 9156-9158.
91. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society 2008, 130 (37), 12456-12464.
92. Hsieh, H.-J.; Liu, P.-C.; Liao, W.-J., Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnology Letters 2000, 22 (18), 1459-1464.
93. Ispas, C.; Sokolov, I.; Andreescu, S., Enzyme-functionalized mesoporous silica for bioanalytical applications. Analytical and bioanalytical chemistry 2009, 393, 543-54.
94. Bernfeld, P.; Wan, J., Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science 1963, 142 (3593), 678-679.
95. Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry - PROCESS BIOCHEM 2011, 46, 1565-1571.
96. Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-j.; Xu, Z.-K., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic 2009, 56, 189-195.
97. Wen, H.; Nallathambi, V.; Chakraborty, D.; Barton, S. C., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchimica Acta 2011, 175 (3), 283-289.
98. Kim, J.; Jia, H.; Wang, P., Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology advances 2006, 24 (3), 296-308.
99. Halliwell, B.; Gutteridge, J. M. C., The definition and measurement of antioxidants in biological systems. Free Radical Biology and Medicine 1995, 18 (1), 125-126.
100. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007, 39 (1), 44-84.
101. Blokhina, O.; Virolainen, E.; Fagerstedt, K. V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Annals of Botany 2003, 91 (2), 179-194.
102. Fita, I.; Rossmann, M. G., The NADPH binding site on beef liver catalase. Proceedings of the National Academy of Sciences 1985, 82 (6), 1604-1608.
103. Chance, B., EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. Journal of Biological Chemistry 1952, 194 (2), 471-481.
104. Liu, H.; Yang, Q., Feasible synthesis of etched gold nanoplates with catalytic activity and SERS properties. CrystEngComm 2011, 13 (17), 5488-5494.
105. Gu, Z.; Chen, L.; Duan, B.; Luo, Q.; Liu, J.; Duan, C., Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chemical Communications 2016, 52 (1), 116-119.
106. Esken, D.; Turner, S.; Lebedev, O. I.; Van Tendeloo, G.; Fischer, R. A., Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials 2010, 22 (23), 6393-6401.
107. Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F., Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry 2012, 4 (4), 310-316.
108. Yaghi, O. M., Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks. Journal of the American Chemical Society 2016, 138 (48), 15507-15509.
109. Besteman, K.; Lee, J.-O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C., Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Letters 2003, 3 (6), 727-730.
110. Phadtare, S.; Kumar, A.; Vinod, V. P.; Dash, C.; Palaskar, D. V.; Rao, M.; Shukla, P. G.; Sivaram, S.; Sastry, M., Direct Assembly of Gold Nanoparticle “Shells” on Polyurethane Microsphere “Cores” and Their Application as Enzyme Immobilization Templates. Chemistry of Materials 2003, 15 (10), 1944-1949.
111. Luckarift, H. R.; Spain, J. C.; Naik, R. R.; Stone, M. O., Enzyme immobilization in a biomimetic silica support. Nature Biotechnology 2004, 22 (2), 211-213.
112. Wang, Y.; Caruso, F., Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. Chemistry of Materials 2005, 17 (5), 953-961.
113. Pierre, S. J.; Thies, J. C.; Dureault, A.; Cameron, N. R.; van Hest, J. C. M.; Carette, N.; Michon, T.; Weberskirch, R., Covalent Enzyme Immobilization onto Photopolymerized Highly Porous Monoliths. Advanced Materials 2006, 18 (14), 1822-1826.
114. Lee, K. Y.; Yuk, S. H., Polymeric protein delivery systems. Progress in Polymer Science 2007, 32 (7), 669-697.
115. Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R., Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 2007, 40 (6), 1451-1463.
116. Betancor, L.; Luckarift, H. R., Bioinspired enzyme encapsulation for biocatalysis. Trends in Biotechnology 2008, 26 (10), 566-572.
117. Tran, D. N.; Balkus, K. J., Perspective of Recent Progress in Immobilization of Enzymes. ACS Catalysis 2011, 1 (8), 956-968.
118. Hartmann, M.; Kostrov, X., Immobilization of enzymes on porous silicas – benefits and challenges. Chemical Society Reviews 2013, 42 (15), 6277-6289.
119. Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P., Enzymatic reactions in confined environments. Nature Nanotechnology 2016, 11 (5), 409-420.
120. Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S., Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society 2011, 133 (27), 10382-10385.
121. Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R. W.; Ma, S., How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows. Journal of the American Chemical Society 2012, 134 (32), 13188-13191.
122. Feng, D.; Liu, T.-F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y.-P.; Wang, X.; Wang, K.; Lian, X.; Gu, Z.-Y.; Park, J.; Zou, X.; Zhou, H.-C., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications 2015, 6 (1), 5979.
123. Li, P.; Modica, Justin A.; Howarth, Ashlee J.; Vargas L, E.; Moghadam, Peyman Z.; Snurr, Randall Q.; Mrksich, M.; Hupp, Joseph T.; Farha, Omar K., Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. Chem 2016, 1 (1), 154-169.
124. Li, P.; Moon, S.-Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K., Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability. Journal of the American Chemical Society 2016, 138 (26), 8052-8055.
125. Lian, X.; Chen, Y.-P.; Liu, T.-F.; Zhou, H.-C., Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chemical Science 2016, 7 (12), 6969-6973.
126. Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H.; Kuo, P.-E.; Chou, L.-Y.; Tsung, C.-K.; Shieh, F.-K., Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications 2019, 10 (1), 5002.
127. Xu, C.; De, S.; Balu, A. M.; Ojeda, M.; Luque, R., Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chemical Communications 2015, 51 (31), 6698-6713.
128. Jauncey, G. E., The Scattering of X-Rays and Bragg′s Law. Proc Natl Acad Sci U S A 1924, 10 (2), 57-60.
129. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
130. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
131. Ou, P.; Wolff, S. P., A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods 1996, 31 (1), 59-67.
132. Nelson, D. P.; Kiesow, L. A., Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry 1972, 49 (2), 474-478.
133. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B 2006, 110 (32), 15700-15707.
134. Jiang, M.; Lim, B.; Tao, J.; Camargo, P. H. C.; Ma, C.; Zhu, Y.; Xia, Y., Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale 2010, 2 (11), 2406-2411.
135. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
136. Užarević, K.; Ferdelji, N.; Mrla, T.; Julien, P. A.; Halasz, B.; Friščić, T.; Halasz, I., Enthalpy vs. friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks. Chemical Science 2018, 9 (9), 2525-2532.
137. An, H.; Song, J.; Wang, T.; Xiao, N.; Zhang, Z.; Cheng, P.; Ma, S.; Huang, H.; Chen, Y., Metal–Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. Angewandte Chemie International Edition 2020, 59 (38), 16764-16769.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2022-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明