博碩士論文 107322040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.21.247.145
姓名 黃森暉(Shen-Hui Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 從順向坡至逆向坡之崩塌行為模擬
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 岩坡工程行為受到不連續面方位及坡面開挖方位之影響相當顯著,在相同的不連續面方位下,不同的坡面開挖方位,將形成所謂的順向坡、斜交坡及逆向坡,其穩定性、崩塌規模、破壞模式等均呈現截然不同的特性,本文稱之為岩坡工程行為之異向性。岩坡工程行為之異向性,包括順向坡、斜交坡及逆向坡之工程特性,已為大地工程師及工程地質師確認、重視且熟悉議題。以經驗法為基礎的技術規範,也行之有年,然而卻欠缺全面、統一的分析模式,以探究岩坡工程行為之異向性。
本文利用FracMan生成離散裂隙網絡(DFN),引入PFC3D建構一個以合成岩體(SRM)為基礎的統一分析模式,以模擬從順向坡至斜交坡,再至逆向坡的岩坡崩塌行為。本文針對具有一組不連續面傾角之岩坡(坡角75°、坡高250m、坡長580m)進行一系列的數值模擬,分析變因包括:不連續面傾角(30°、45°、60°、70°)及坡面與不連續面傾向夾角(0°~180°,每隔10°),探討從順向坡、斜交坡到逆向坡之崩塌行為之變化,嘗試透過崩塌能量、崩塌體積、崩塌位移方向及波及區域等量化指標描述崩塌行為。研究結果顯示:(1) 基於合成岩體所建構之統一分析模式,不需預設破壞模態,可模擬順向坡、斜交坡到逆向坡之崩塌行為,且分析結果合理,符合一般工程經驗。(2) 崩塌能量包含崩塌量體及重直落距,可作為崩塌事件規模之量化指標。崩塌能量也較一般習用極限平衡分析所得之安全係數更能呈現崩塌事件所引致的風險及損失。(3) 本文以崩塌能量為指標,嘗試建立岩坡之RMR不連續面方位評分調整。(4) 本文根據崩塌前、後之數值地形模型(DTM)之變動,可求得波及區域。波及區域分為陷落區及堆積區,其高程可作為描述地形變動的嚴重程度,較一般常用之安全係數、運移距離、退縮距離、抵達角有更豐富、更全面的資訊內涵,可精進岩坡穩定及風險分析工作。
摘要(英) The behavior of rock slope engineering is significantly affected by the orientation of discontinuity and excavation orientation of slope face. Under same orientation of discontinuity, the different excavation orientation of slope face will comprises of dip slope, oblique slope and anti-dip slope. What′s more, the rock slope engineering will show completely different characteristics such as stability, landslides scale and failure mode, which is called the anisotropic engineering behavior of rock slope in this paper. The anisotropic engineering behavior of rock slope including the different engineering properties of dip slope, oblique slope and anti-dip slope, has been recognized, valued, by geotechnical engineers and engineering geologists. Technical specifications based on empirical methods have also been used for many years, but they are sort comprehensive and unified analysis model to explore the anisotropic engineering behavior of rock slope.
In this paper, I use the FracMan to generate discrete fracture network(DFN), and imports into PFC3D to construct a unified analysis model base on synthetic rock mass (SRM). That is simulated for the landslide behavior of rock slopes from dip slope to oblique slopes and then to anti-dip slope. This paper carries out a series of numerical simulations for a rock slope with a set of discontinuity (slope angle 75°, slope height 250m, slope length 580m). The analysis variables include: the dip of the discontinuity (30°, 45°, 60°, 70°) and the angle between dip direction of slope face and discontinuity (0°~180°, step 10°). The change of the landslide behavior from the dip slope to anti-dip slope is attempted to describe with the quantitative indicators such as energy release of landslides, landslides volume, displacement magnitude, movement direction and impact area.
Based on the research results: (1) The unified analysis mode is constructed based on the synthetic rock mass which does not need to preset the failure mode, and it can simulate the landslide behavior of the dip slope to oblique slopes and anti-dip slope. The analysis results are reasonable with the general engineering experience. (2) The energy realese of landslides includes the mass of landslides and the fall distance, which is a good indicator to quantify the scale of the landslide events. The energy release of landslides is better than the safety factor which is obtained by the conventional limit equilibrium analysis to represent the risks and losses caused by the landslide events. (3) In this paper, the energy realese of landslides is used as the index that is attempted to establish the discontinuity orentation adjustment of rock slope engineering in the classification of RMR. (4) The impact area is based on digital terrain model which elevation can be used to describe the severity of the terrain change, and the terrain change can be divided into depletion area and deposition area. The impact area has richer and more comprehensive information content than the commonly used safety factor, traval distance, setback, and reach angle, that can improve rock slope stability and risk analysis tasks.
關鍵字(中) ★ 順向坡
★ 斜交坡
★ 逆向坡
★ 異向性
★ 合成岩體
★ 崩塌能量
關鍵字(英) ★ Dip slope
★ Oblique slope
★ Anti-dip slope
★ Anisotropy
★ Synthetic rock mass
★ Energey release of landslide
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 IX
表目錄 XVII
第一章、 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 4
1.3 研究架構 5
第二章、文獻回顧 6
2.1 岩坡之破壞模式及型態 6
2.2 極限平衡分析 9
2.3 岩坡工程模型實驗及數值模擬 16
2.3.1 模型實驗 16
2.3.2 岩坡工程數值模擬 20
2.4 合成岩體模型(SRM) 27
2.5 波及區域 39
第三章、 岩坡崩塌行為數值模擬 41
3.1 模型建構 43
3.2 模擬步驟 50
3.3 微觀參數及巨觀力學行為 54
第四章、 數值模擬分析結果與比較 60
4.1 崩塌位移方向與分布 61
4.1.1 順向坡至斜交坡之位移方向與分布 63
4.1.2 斜交坡至逆向坡之位移方向與分布 76
4.1.3 斜交坡之位移方向與分布 87
4.2 波及區域 88
4.2.1 順向坡至斜交坡之波及區域 92
4.2.2 斜交坡至逆向坡之波及區域 101
4.3 崩塌體積與能量 107
4.3.1 傾向夾角之對稱性 108
4.3.2 不同|αj−αs|(°)對崩塌體積之影響 110
4.3.3 不同|αj−αs|(°)對崩塌能量之影響 112
4.3.4 不連續面方位評分調整分級 113
4.4 極限平衡與離散元素分析結果比較 117
4.4.1 順向坡(|αj−αs|=0°)之穩定性分析 118
4.4.2 逆向坡(|αj−αs|=180°)之穩定性分析 121
4.4.3 崩塌體積解析 128
第五章、 結論與建議 131
5.1 結論 131
5.2 建議 133
參考文獻 134
附錄A、順向坡至斜交坡之位移方向 138
附錄B、順向坡至逆向坡之波及區域 140
參考文獻 1.行政院農委會,「水土保持技術規範」(2003)。
2.吳柏翰,「正交性合成岩體之模擬技術」,國立中央大學土木工程系,碩士論文,中壢(2019)。
3.林煒僑,「順向坡與斜交坡之降挖機制探討」,國立台灣科技大學,碩士論文,台北 (2002)。
4.林育槿,「以分離元素法與離心模型試驗探討順向坡滑動行為」,國立中央大學土木工程系,碩士論文,中壢(2016)。
5.許哲睿,「岩體裂隙程度與力學性質之不確定性」,碩士論文,國立中央大學,桃園 (2017)。
6.許凱翔,「以數值模擬岩石節理面之剪力行為」,國立中央大學土木工程系,碩士論文,中壢(2014)。
7.陳堯中、廖洪鈞、林宏達和陳志南,「汐止林肯大郡災變原因探討」,地工技術,第六十八卷第三期,29~40頁 (87年8月)。
8.劉家豪,「橫向等向性合成岩體之力學行為及其變異性」,國立中央大學土木工程系,碩士論文,中壢(2019)。
9.蔡尚均,「順向坡變形之規模效應研究‐以離心機實驗與分離元素法探討」,國立臺灣大學工學院土木工程系,碩士論文,台北(2016)。
10.鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,國立中央大學土木工程學系,碩士論文,中壢(2019)。
11.羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、冀樹勇、林錫宏和林銘郎,「國道 3 號七堵順向坡滑動過程之動態模擬」,中華水土保持學報,第四十二卷第三期,175~183頁 (2011)。
12.建築技術規則,第十三章 (民國86年12月26日)
13.Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989)
14.Chen, C.H., Ke, C.C. & Wang, C.L. “A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan.” Environmental Geology, 57, 723-733 (2009)
15.Chen, C.H., Li, H.H. Chiu, Y.C. & Tsai, Y.K. “Dynamic response of a physical anti-dip rock slope model revealed by shaking table tests.” Engineering Geology, 277, 723-733 (2020)
16.Deere, D.U. and Miller, R.P., “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report No. AFNL-TR-65-116, Albuquerque, NM. (1966).
17.Dershowitz, W.S., and Einstein, H.H., “Characterizing rock joint geometry with joint system models,” Journal of Rock Mechanics and Rock Engineering, Vol. 21, pp. 21–51 (1988).
18.Domej, G., Bourdeau, C., Lenti L., Martino, S., and Pluta, K. “Shape and Dimension Estimations of Landslide Rupture Zones via Correlations of Characteristic Parameters,” Geosciences, Vol. 10(5), pp.198 (2020).
19.Eberhardt, E., Stead, D. & Coggan, J.S. “Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41(1), pp. 69-87 (2004).
20.Feng, X., Jiang, Q., Zhang, X., and Zhang, H. “Shaking Table Model Test on the Dynamic Response of Anti-dip Rock Slope,” Geotechnical and Geological Engineering, Vol. 37, pp. 1211-1221 (2019).
21.Giani, G. P., Rock slope stability analysis, A.A. Balkema, pp. 191-193 (1992).
22.Giani, G. P., Giacomini, A., Migliazza, M., and Segalini, A. “Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design.” Rock Mechanics and Rock Engineering, 37(5), 369-389 (2004).
23.Grenon, M., Hadjigeorgiou, J., Fracture-SG. A fracture system generator software package, Version 2.17 (2008).
24.Heim, A., Landslides & human lives : bergsturz und menschenleben., BiTech Publishers Ltd (1989).
25.Hungr, O., Corominas, J. & Eberhardt, E., Estimating landslide motion mechanism, travel distance and velocity. Landslide Risk Management (1st ed.), CRC Press (2005).
26.Holt, R. M., Kjølaas, J., Larsen, I., Li, L., Pillitteri, A. G., and Sønstebø, E. F. “Comparison Between Controlled Laboratory Experiments and Discrete Particle Simulations of the Mechanical Behavior of Rock,” Int. J. Rock Mech. Min. Sci., 42, 985-995 (2005).
27.Jiang, M.J., Yu, H.-S., Harris, D. “A novel discrete model for granular material incorporating rolling resistance,” Computers and Geotechnics, Vol. 32(5), pp. 340-357 (2005).
28.Kulatilake, P.H.S.W., Malama, B., and Wang, J., “Physical and particle flow modeling of Jointed rock block behavior under uniaxial loading,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 641-657 (2001).
29.Lorig, L., Stacey, P., Read, J., Guidelines for Open Pit Slope Design. CSIRO Publishing, Collingwood, pp. 237-264 (2009).
30.Lo, C.M., Li, H.H. & Ke, C.C. “Kinematic model of a translational slide in the Cidu section of the Formosan Freeway.” Landslides, 13, 141-151 (2016).
31.Lu, Y.C., “Uncertainties of geometrical and mechanical properties of heterogeneous media and discontinuous rock masses,” PhD dissertation, Dept. of Civil Engineering, National Central University, Taoyuan, Taiwan (2018).
32.Mostyn, G., Helgstedt, M.D., Douglas, K.J., “Towards field bounds on rock mass failure criteria,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, pp. 3-4 (1997).
33.Ministry of Transportation and Communications ROC Translational slide at the Cidu section (3K+100) of Formosan Freeway preliminary examination report. Ministr Transport Commun ROC Rep (2010).
34.Mar Ivars, D. M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P. and Cundall, P.A., “The synthetic rock mass approach for Jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, pp. 219-244 (2011).
35.Ning, Y., Zhang, G., Tang, H., Shen, W., and Shen, P. “Process Analysis of Toppling Failure on Anti-dip Rock Slopes Under Seismic Load in Southwest China,” Rock Mechanics and Rock Engineering, Vol. 52, pp. 4439–4455 (2019).
36.Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009)
37.Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
38.Romana M., New adjustment ratings for application of Bieniawski classification to slopes. Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works (pp. 49-53). Zacatecas: International Society of Rock Mechanics (1985).
39.Raetzo, H., Lateltin, O., Bollinger, D. & Tripet, J. “Hazard assessment in Switzerland – Codes of Practice for mass movements.” Bulletin of Engineering Geology and the Environment, 61, 263-268 (2002)
40.Itasca Consulting Group Inc, PFC 5.0 Documentation, 2014.
41.Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
42.Scholtès, L., and Donze, F.V., “A DEM analysis of step-path failure in jointed rock slopes,” Comptes Rendus Mécanique, Vol. 343(2), pp. 155-165 (2015).
43.Singh, Bhawani., and Goel, R.K. Engineering Rock Mass Classification (1st ed.), Butterworth-Heinemann, p.15 (2011)
44.Snohomish County: The definition of landslide hazard area。(2015) 取自https://snohomishcountywa.gov/3681/Landslide-Hazard-Area。
45.Vyazmensky, A., Stead, D., Elmo, P. D., and Moss, A. “Numerical Analysis of Block Caving-Induced Instability in Large Open Pit Slopes: A Finite Element/Discrete Element Approach,” Rock Mechanics and Rock Engineering, Vol. 43, pp. 21-39 (2010).
46.Wang, C., Tannant, D.D., Lilly, P.A., “A DEM analysis of step-path failure in jointed rock slopes,” Int J Rock Mech Min Sci, Vol. 40(3), pp. 415-424 (2003).
47.Wyllie, Mah, C. W., & Hoek, E., Rock slope engineering civil and mining (4th ed.), Spon Press. (2004).
48.Zheng, Y., Chen, C., Liu, T., Zhang, H., Xia, K. and Liu, X., “Study on the mechanisms of flexural toppling failure in anti-inclined rock slopes using numerical and limit equilibrium models,” Engineering Geology, Vol. 237, pp. 116-128 (2018).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2022-5-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明