參考文獻 |
[1] Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87.
[2] Wu, C.-J., et al., Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine. RSC advances, 2016. 6(30): p. 24827-24834.
[3] Harkins, W.D. and A. Feldman, Films. The spreading of liquids and the spreading coefficient. Journal of the American Chemical Society, 1922. 44(12): p. 2665-2685.
[4] Ross, S. and P. Becher, The history of the spreading coefficient. Journal of colloid and interface science, 1992. 149(2): p. 575-579.
[5] Tanner, L., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D: Applied Physics, 1979. 12(9): p. 1473.
[6] He, G. and N. Hadjiconstantinou, A molecular view of Tanner′s law: molecular dynamics simulations of droplet spreading. Journal of Fluid Mechanics, 2003. 497: p. 123-132.
[7] Weng, Y.-H., et al., Spreading dynamics of a precursor film of nanodrops on total wetting surfaces. Physical Chemistry Chemical Physics, 2017. 19(40): p. 27786-27794.
[8] De Gennes, P.-G., F. Brochard-Wyart, and D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Vol. 315. 2004: Springer.
[9] Heslot, F., et al., Experiments on wetting on the scale of nanometers: Influence of the surface energy. Physical review letters, 1990. 65(5): p. 599.
[10] Tiberg, F. and A.-M. Cazabat, Spreading of thin films of ordered nonionic surfactants. Origin of the stepped shape of the spreading precursor. Langmuir, 1994. 10(7): p. 2301-2306.
[11] Villette, S., et al., Ultrathin liquid films. Ellipsometric study and AFM preliminary investigations. Physica A: Statistical Mechanics and its Applications, 1997. 236(1-2): p. 123-129.
[12] Afsar-Siddiqui, A.B., P.F. Luckham, and O.K. Matar, The spreading of surfactant solutions on thin liquid films. Advances in Colloid and interface science, 2003. 106(1-3): p. 183-236.
[13] Kavehpour, H.P., B. Ovryn, and G.H. McKinley, Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Physical review letters, 2003. 91(19): p. 196104.
[14] Żbik, M.S. and R.L. Frost, PDMS spreading morphological patterns on substrates of different hydrophilicity in air vacuum and water. Journal of colloid and interface science, 2010. 344(2): p. 563-574.
[15] Xu, H., et al., Molecular motion in a spreading precursor film. Physical review letters, 2004. 93(20): p. 206103.
[16] Żbik, M.S. and R.L. Frost, AFM study of forces between silicon oil and hydrophobic–hydrophilic surfaces in aqueous solutions. Journal of colloid and interface science, 2010. 349(2): p. 492-497.
[17] Beattie, D.A., et al., Molecularly-thin precursor films of imidazolium-based ionic liquids on mica. The Journal of Physical Chemistry C, 2013. 117(45): p. 23676-23684.
[18] Wang, Z. and C. Priest, Impact of nanoscale surface heterogeneity on precursor film growth and macroscopic spreading of [Rmim][NTf2] ionic liquids on mica. Langmuir, 2013. 29(36): p. 11344-11353.
[19] Wang, Z., F. Shi, and C. Zhao, Humidity-accelerated spreading of ionic liquids on a mica surface. RSC advances, 2017. 7(68): p. 42718-42724.
[20] Ivanova, N. and T. Esenbaev, Wetting and dewetting behaviour of hygroscopic liquids: Recent advancements. Current Opinion in Colloid & Interface Science, 2021. 51: p. 101399.
[21] Hardy, W.B., III. The spreading of fluids on glass. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1919. 38(223): p. 49-55.
[22] Liu, C., et al., Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Scientific reports, 2017. 7(1): p. 1-8.
[23] Galy, P.E., et al., Self-propelled water drops on bare glass substrates in air: Fast, controllable, and easy transport powered by surfactants. Langmuir, 2020. 36(25): p. 6916-6923.
[24] Cira, N.J., A. Benusiglio, and M. Prakash, Vapour-mediated sensing and motility in two-component droplets. Nature, 2015. 519(7544): p. 446-450.
[25] Hu, S.-W., et al., Directed self-propulsion of droplets on surfaces absent of gradients for cargo transport. Journal of Colloid and Interface Science, 2021. 586: p. 469-478.
[26] Huang, Y.-M., Y.-J. Sheng, and H.-K. Tsao, Peculiar encounter between self-propelled droplet and static droplet: swallow, rerouting, and recoil. Journal of Molecular Liquids, 2022. 347: p. 118378.
[27] Wagner, R., et al., Silicon‐modified surfactants and wetting: I. Synthesis of the single components of Silwet L77 and their spreading performance on a low‐energy solid surface. Applied organometallic chemistry, 1999. 13(9): p. 611-620.
[28] Eş, I., et al., Current advances in biological production of propionic acid. Biotechnology letters, 2017. 39(5): p. 635-645.
[29] Gomes, R.J., et al., Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food technology and biotechnology, 2018. 56(2): p. 139.
[30] Lee, H.-J., et al., Naturally occurring propionic acid in foods marketed in South Korea. Food Control, 2010. 21(2): p. 217-220.
[31] Levine, A. and C. Fellers, Action of acetic acid on food spoilage microörganisms. Journal of bacteriology, 1940. 39(5): p. 499-515.
[32] Sengun, I.Y. and S. Karabiyikli, Importance of acetic acid bacteria in food industry. Food control, 2011. 22(5): p. 647-656.
[33] Suomalainen, T.H. and A.M. Mäyrä-Makinen, Propionic acid bacteria as protective cultures in fermented milks and breads. Le Lait, 1999. 79(1): p. 165-174.
[34] Fondecave, R. and F.B. Wyart, Wetting laws for polymer solutions. EPL (Europhysics Letters), 1997. 37(2): p. 115.
[35] Fondecave, R. and F.B. Wyart, Polymers as dewetting agents. Macromolecules, 1998. 31(26): p. 9305-9315.
[36] Brochard-Wyart, F., R. Fondecave, and M. Boudoussier, Wetting of antagonist mixtures: theleak out′transition. International Journal of Engineering Science, 2000. 38(9-10): p. 1033-1047.
[37] Hu, S.-W., et al., Peculiar Wetting of N, N-dimethylformamide: Expansion, contraction, and self-running. The Journal of Physical Chemistry C, 2019. 123(40): p. 24477-24486.
[38] Nuthalapati, K., Y.-J. Sheng, and H.-K. Tsao, Anomalous interfacial dynamics of pendant droplets of N, N-dimethylformamide containing Silwet. Journal of the Taiwan Institute of Chemical Engineers, 2022. 133: p. 104282.
[39] Collignon, S., J. Friend, and L. Yeo, Planar microfluidic drop splitting and merging. Lab on a Chip, 2015. 15(8): p. 1942-1951.
[40] Wang, W. and T.B. Jones, Moving droplets between closed and open microfluidic systems. Lab on a Chip, 2015. 15(10): p. 2201-2212.
[41] Krumpfer, J.W. and T.J. McCarthy, Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday discussions, 2010. 146: p. 103-111.
[42] Luo, M., R. Gupta, and J. Frechette, Modulating contact angle hysteresis to direct fluid droplets along a homogenous surface. ACS applied materials & interfaces, 2012. 4(2): p. 890-896. |