博碩士論文 109324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.149.233.62
姓名 王耀駿(王耀駿)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氫鍵高分子複合物:從奈米的聚集體到高分子的複合材料
(Hydrogen-bonded polymer complexes: From nanosized aggregate to polymeric composite)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 常用於分散劑以及具生物相容性質的醫療用黏著劑中的聚丙烯酸 (PAA) 可以在水中與其他水溶性高分子(例如:聚乙烯醇、聚乙烯吡咯烷酮等)形成氫鍵沉澱物。根據質子受體聚合物的類型,沉澱物可以形成不同種類的材料,包括奈米的聚集體、締合聚合物的濃縮液、水凝膠、彈性體和高分子的複合物。在這項研究中,研究了聚合物分子量對氫鍵沉澱物的力學性質影響。發現一般來說,隨著高分子複合物的水含量降低,但其機械強度隨著質子供體或受體的分子量增加而增加。其中,水凝膠和彈性體都表現出固體般的行為(G′>G”),並且由於氫鍵的可再生而具有自我修復的能力。然而,水凝膠具有較低的機械強度而使用振盪測試做量測;彈性體具有較高的機械強度,所以採用拉伸測試做測量。與具有小分子量的PAA 相似,單寧 (TA)具有多個氫鍵,用於與質子受體形成網絡結構(水凝膠)。然而,高分子複合物的機械強度對單寧的摩爾分率很敏感。作為交聯劑,TA可產生比 PAA更強的聚合物複合物,且分子量較小。由於TA的平面結構,TA與聚合物(PEO或PVP)之間的沉澱結果取決於聚合物結構,以及氫鍵的強度。
摘要(英) Polyacrylic acid (PAA) used for dispersants and biocompatible matrices in medical glue can form hydrogen-bonded precipitates with other water-soluble polymers (e.g., poly(ethylene oxide), polyvinylpyrrolidone, …etc.) readily in water. Dependent on the type of proton acceptor polymers, the precipitates can be developed into different kinds of materials, including nanosized aggregates, concentrated solutions of associated polymers, hydrogels, elastomers, and polymeric composites. In this work, the effect of the polymer molecular weight on the mechanical properties of the hydrogen-bonded precipitates is studied. It is found that in general, the water content of the polymer complex decreases but its mechanical strength grows, as the molecular weight of donor or acceptor is increased. Both hydrogel and elastomer exhibit the solid-like behavior (G’>G”) and possess the self-healing ability owing to the regeneration of hydrogen bonding. However, hydrogels have lower mechanical strength characterized by the oscillatory test, while elastomers have higher mechanical strength characterized by the tensile test. Similar to PAA with small molecular weight, tannin (TA) has multiple hydrogen-bonding sites for developing a network structure (hydrogel) with proton acceptor. However, the mechanical strength of the polymer complex is sensitive to the mole fraction of tannin. As a crosslinker, TA yields a stronger polymer complex than PAA with a small molecular weight. Because of the planar configuration of TA, the outcomes of the precipitation between TA and polymers (PEO or PVP) depend on the polymer structure, in addition to the strength of hydrogen bonding.
關鍵字(中) ★ 氫鍵高分子複合物 關鍵字(英) ★ Hydrogen-bonded polymer complexes
論文目次 摘要 i
ABSTRACT ii
致謝 iii
LIST OF CONTENTS v
LIST OF FIGURES vi
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EXPERIMENT 3
2-1 Materials 3
2-2 Precipitation of the polymer complex 3
2-3 Particle size distribution of the polymer complex 4
2-4 Rheological characterizations and tensile/compression test of the polymer complex 4
CHAPTER 3 RESULTS AND DISCUSSION 5
3-1 Effect of the molecular weight of proton acceptor 5
3-2 Effect of the molecular weight of proton donor 15
3-3 Polymer complexes by tannin 19
CHAPTER 4 CONCLUSIONS 25
CHAPTER 5 REFERENCES 27
參考文獻 1. Hyun, K.H., et al., Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method. Journal of Power Sources, 2015. 286: p. 197-203.
2. Rahim, M.A., et al., Metal ion-enriched polyelectrolyte complexes and their utilization in multilayer assembly and catalytic nanocomposite films. Langmuir, 2012. 28(22): p. 8486-95.
3. Mentbayeva, A., et al., Polymer-metal complexes in polyelectrolyte multilayer films as catalysts for oxidation of toluene. Langmuir, 2012. 28(32): p. 11948-55.
4. Weng, D., et al., Polymeric Complex-Based Transparent and Healable Ionogels with High Mechanical Strength and Ionic Conductivity as Reliable Strain Sensors. ACS Appl Mater Interfaces, 2020. 12(51): p. 57477-57485.
5. Wang, T., et al., A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Advanced Functional Materials, 2018. 28(7).
6. Ibrahim, G.P.S., et al., Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chemical Engineering Journal, 2018. 353: p. 425-435.
7. Zhang, L., et al., Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chemical Engineering Journal, 2019. 378.
8. Wang, J.-W. and Y.-M. Kuo, Preparation and adsorption properties of chitosan–poly(acrylic acid) nanoparticles for the removal of nickel ions. Journal of Applied Polymer Science, 2008. 107(4): p. 2333-2342.
9. Shen, J.N., et al., Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation. Int J Mol Sci, 2013. 14(2): p. 3621-38.
10. Babiker, D.M.D., et al., Hydrogen-bonded methylcellulose/poly(acrylic acid) complex membrane for oil-water separation. Surface and Coatings Technology, 2019. 367: p. 49-57.
11. Hu, C., et al., Pervaporation performance of chitosan–poly(acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution. Separation and Purification Technology, 2007. 55(3): p. 327-334.
12. Shibata, M., Y. Kimura, and D. Yaginuma, Thermal properties of novel supramolecular polymer networks based on poly(4-vinylpyridine) and disulfonic acids. Polymer, 2004. 45(22): p. 7571-7577.
13. Chollakup, R., et al., Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)−Poly(allylamine) Solutions. Macromolecules, 2010. 43(5): p. 2518-2528.
14. Huang, X. and S. Goh, Interpolymer complexes through hydrophobic interactions: C60-end-capped poly (ethylene oxide)/poly (methacrylic acid) complexes. Macromolecules, 2000. 33(23): p. 8894-8897.
15. Fang, X., et al., Dynamic Hydrophobic Domains Enable the Fabrication of Mechanically Robust and Highly Elastic Poly(vinyl alcohol)-Based Hydrogels with Excellent Self-Healing Ability. ACS Materials Letters, 2020. 2(7): p. 764-770.
16. Hayes, W. and B.W. Greenland, Donor–Acceptor π–π Stacking Interactions: From Small Molecule Complexes to Healable Supramolecular Polymer Networks, in Supramolecular Polymer Networks and Gels. 2015. p. 143-166.
17. Son, S.Y., et al., Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules, 2018. 51(7): p. 2572-2579.
18. Liu, X., et al., Healable and Recyclable Polymeric Materials with High Mechanical Robustness. ACS Materials Letters, 2022. 4(4): p. 554-571.
19. Luo, Y. and Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol, 2014. 64: p. 353-67.
20. Kim, S.H., et al., Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release, 2008. 129(2): p. 107-16.
21. Zhao, L., et al., Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials (Basel), 2020. 10(5).
22. Khutoryanskiy, V.V. and G. Staikos, Hydrogen-bonded interpolymer complexes: formation, structure and applications. 2009: World Scientific.
23. Chun, M.K., P. Bhusal, and H.K. Choi, Application of Carbopol/PVP interpolymer complex to prepare mucoadhesive floating granule. Arch Pharm Res, 2013. 36(6): p. 745-51.
24. Vasi, A.M., et al., Poly(acrylic acid)-poly(ethylene glycol) nanoparticles designed for ophthalmic drug delivery. J Pharm Sci, 2014. 103(2): p. 676-86.
25. Wang, Y., et al., Transparent, Healable Elastomers with High Mechanical Strength and Elasticity Derived from Hydrogen-Bonded Polymer Complexes. ACS Appl Mater Interfaces, 2017. 9(34): p. 29120-29129.
26. Swift, T., C.C. Seaton, and S. Rimmer, Poly(acrylic acid) interpolymer complexes. Soft Matter, 2017. 13(46): p. 8736-8744.
27. Mun, G.A., et al., pH-effects in the complex formation of polymers I. Interaction of poly(acrylic acid) with poly(acrylamide). European Polymer Journal, 2003. 39(8): p. 1687-1691.
28. Khutoryanskiy, V.V., et al., pH effects in the complex formation and blending of poly (acrylic acid) with poly (ethylene oxide). Langmuir, 2004. 20(9): p. 3785-3790.
29. Nurkeeva, Z.S., et al., pH effects in the formation of interpolymer complexes between poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions. Eur Phys J E Soft Matter, 2003. 10(1): p. 65-8.
30. Gadwal, I., A Brief Overview on Preparation of Self-Healing Polymers and Coatings via Hydrogen Bonding Interactions. Macromol, 2020. 1(1): p. 18-36.
31. Han, W., et al., Acid-Resistance and Self-Repairing Supramolecular Nanoparticle Membranes via Hydrogen-Bonding for Sustainable Molecules Separation. Adv Sci (Weinh), 2021. 8(23): p. e2102594.
32. Zhang, Y., et al., Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–Poly(acrylic acid) Complexes. Macromolecules, 2016. 49(19): p. 7563-7570.
33. Du, Y., et al., Water-Triggered Self-Healing Coatings of Hydrogen-Bonded Complexes for High Binding Affinity and Antioxidative Property. Advanced Materials Interfaces, 2016. 3(15).
34. Khutoryanskiy, V.V., et al., pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions. Polymer International, 2004. 53(9): p. 1382-1387.
35. Chen, C., et al., Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv, 2022. 12(13): p. 7689-7711.
36. Yan, W., et al., Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci, 2020. 284: p. 102267.
37. Fraga-Corral, M., et al., Technological Application of Tannin-Based Extracts. Molecules, 2020. 25(3).
38. Ibrahim, A., A.Z. Yaser, and J. Lamaming, Synthesising tannin-based coagulants for water and wastewater application: A review. Journal of Environmental Chemical Engineering, 2021. 9(1).
39. Nam, H.G., et al., Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. Soft Matter, 2019. 15(4): p. 785-791.
40. Gaikwad, A., et al., Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity. ACS Appl Mater Interfaces, 2020. 12(9): p. 11026-11035.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2022-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明