博碩士論文 106324010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.138.175.180
姓名 周家玥(Chia-Yueh Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 濺鍍氣氛及基材對氮化矽/氧化矽介電性增強機制探討
(Effect of mixing Ar/N2 sputtering ambients and ITO interlayer surface on dielectrics of Si-nitride and Si-oxide films)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 在這科技日新月異的時代中,電子產品的尺寸越做越小,而電子產品裡面晶片尺寸、薄膜電容的尺寸也同樣越來越小。在電容的製備中,傳統使用的氮化矽、氧化矽等介電材料具有高化學穩定性以及低漏電等優點,但它的低介電常數卻不足以因應尺寸逐漸縮小的電容需求,因此傳統介電材料將被High-k 材料或是由多層介電層組合所取代。然而,High-k 材料有著容易漏電以及電容不穩定性等缺點,大多需要昂貴的製程(原子層磊晶或雷射脈衝沉積)來確保品質,而多層介電層也有著製程複雜的限制。因此,本研究使用相對低成本的磁控濺鍍,利用改變濺鍍環境以及將銦錫氧化物薄膜中間層插入電極與介電層之間的方式有效地提升電容值。
在章節3 中,製備了使用N2/Ar 混和氣體以及純Ar 環境下濺鍍的氮化矽薄膜,使用N2/Ar 混和氣體濺鍍環境來製備的氮化矽薄膜具有高達17 的介電常數,高於純Ar濺鍍環境下的介電常數。此外,還高於所有其它已報導的濺鍍氮化矽薄膜以及相當於化學氣相沉積的氮化矽薄膜。在光電子能譜儀中可得知,在氬氣/氮氣混和氣體所濺鍍的氮化矽中,SiNx 為主要成分並且與濺鍍過程中游離的氮物質有關,並且在光致發光的儀器分析中可證實,在氬氣/氮氣混和氣體所製備的氮化矽薄膜比用純氬氣環境下製備的氮化矽薄膜具有更多的氮空缺。
在章節4 中,製備了Cu/Si-oxide/Cu (MIM) 和 Cu/Si-oxide/Indium-Tin-Oxide/Cu(MIM-ITO)兩種電容結構,MIM-ITO 結構 (1365.5 pF) 的電容經測量比 MIM 結構 (442 pF) 大四倍。 ITO 中間層增強了“邊緣效應”並導致在氧化矽膜中形成非化學計量比的
Si2O3 。 Si2O3 四面體呈現出強烈的自發偶極矩,在外加電場下導致氧化矽膜中的淨極化增加。通過 穿透式電子顯微鏡以及光電子能譜儀的分析,含 Si2O3 的氧化矽薄膜的生長可歸因於在氧化矽/ITO 介面有 (222)面傾向的 ITO 鋸齒狀表面。
摘要(英) With the continuous development of technology, the demand for electronic products is becoming smaller and more convenient. The chips in electronic products will also become smaller and smaller, which means that the area of capacitors inside the chip also needs to be reduced. In the fabrication of capacitors, traditionally used dielectric materials such as Si3N4 and SiO2 have the advantages of high chemical stability and low leakage, but their low dielectric
constant is not enough to meet the needs of gradually shrinking capacitors. Therefore, traditional dielectric materials are replaced by High-k materials or sandwich structures consisting of multiple dielectric layers. However, High-k materials have disadvantages such as easy leakage and capacitance instability. Most of them require expensive processes, such as atomic layer deposition or laser pulse deposition, to ensure quality. The sandwich structure dielectric layer also has some limitation of complex processes. Therefore, in this research, relatively low-cost magnetron sputtering was used to effectively improve the dielectric constant of traditional dielectric materials by changing the sputtering environment and inserting an ITO interlayer to meet the needs of high capacitance values.
In chapter 3, Si-nitride films sputtered using N2/Ar mixed gas flow and pure Ar ambient were prepared. Si-nitride films fabricated using the Ar/N2 mixed gas flow sputtering ambient
have a dielectric constant as high as 17, which is higher than that of pure Ar gas flow sputtering. In addition, it is higher than all other reported sputtered silicon nitride films and equivalent to chemical vapor deposited silicon nitride films. In X-ray photoelectron spectroscopy analysis, it can be known that in the Si-nitride sputtered by the Ar/N2 mixed gas flow, SiNx is the dominated phase, which is related to the radiative N species during the sputtering process. The photoluminescence analysis confirmed that the Si-nitride thin film sputtered in the Ar/N2 mixed gas flow has more N vacancies than the Si-nitride thin film sputtered in pure Ar gas flow.
In chapter 4, two parallel-plate capacitors, Cu/Si-oxide/Cu (MIM) and Cu/Sioxide/Indium-Tin-Oxide/Cu (MIM-ITO), were fabricated. The capacitance of MIM-ITO structure (1365.5 pF) was measured to be much larger than MIM structure (442 pF) by four folds. The ITO interlayer enhances the “edge effect” and results in non-stoichiometric Si2O3 phase formation in Si-oxide film. Si2O3 tetrahedrons present strong spontaneous dipoles, which result in an additional net polarization in the Si-oxide film under an applied electric field. With TEM images, (222)-preferred ITO crystalline phase was observed at the Si-oxide/ITO interface and served as the growth seed layer for Si2O3-contained Si-oxide film.
關鍵字(中) ★ 氧化矽
★ 氮化矽
★ 銦錫氧化物
★ 電容
★ 介電常數
★ 濺鍍
關鍵字(英) ★ Silicon oxide
★ Silicon nitride
★ Indium tin oxide
★ capacitor
★ dielectric constant
★ Sputtering
論文目次 中文摘要 I
Abstract II
List of Figure VI
List of Table VII
Chapter 1 Introduction 1
1.1 Metal-insulator-metal capacitor 1
1.2 The polarization of dielectric material 4
1.3 Common use of dielectric materials 9
1.4 High-κ materials 9
1.5 Structure of MIM capacitor 11
1.6 Transparent conductive oxide indium tin oxide (ITO) 13
Chapter 2 Motivation 14
Chapter 3 Dielectric constant enhancement with N2 gas flow 16
3.1 Experimental procedure 16
3.2 Dielectric constant measurement of sputtered Si-nitride dielectric films 19
3.3 XPS analysis of the sputtered Si-nitride dielectric films 22
3.4 PL analysis of the sputtered Si-nitride films 26
Chapter 4 Dielectric constant enhancement with ITO interlayer 29
4.1 Experimental procedure 29
4.2 Dielectric constant measurement of MIM and MIM-ITO structure 32
4.3 Microstructure and bond configuration of Si-oxide 34
4.4 Special properties of Si-oxide/ITO interface 37
4.5 Dipole moment form under electric field 44
Chapter 5 Summary 48
Appendix-capacitor connect in series and parallel 50
Reference 54
參考文獻 [1] Küchler, A., Insulating Materials. In: High Voltage Engineering. VDI-Buch. Springer Vieweg, Berlin, Heidelberg, 2018.
[2] Contreras, José E., and Eden A. Rodriguez. "Nanostructured insulators–A review of nanotechnology concepts for outdoor ceramic insulators." Ceramics International, Vol 43(12), pp. 8545-8550, August 2017.
[3] Tahalyani, J., Akhtar, M. J., Cherusseri, J., and Kar, K. K. Characteristics of capacitor: fundamental aspects. In Handbook of Nanocomposite Supercapacitor Materials I. pp. 1-51, Springer, Cham, 2020.
[4] Wang, B., Huang, W., Chi, L., Al-Hashimi, M., Marks, T. J., and Facchetti, A. “High-k gate dielectrics for emerging flexible and stretchable electronics.” Chemical reviews, Vol 118(11), pp. 5690-5754, May 2018.
[5] Dakin, T. W. “Conduction and polarization mechanisms and trends in dielectric.“ IEEE Electrical Insulation Magazine, Vol 22(5), pp. 11-28, October 2006.
[6] Areef Billah, A. H. M. “Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication.” Bangladesh University, degree of master, May 2016.
[7] Kadhim, M. J., Abdullah, A. K., Al-Ajaj, I. A., and Khalil, A. S. “Mechanical properties of epoxy/Al2O3 nanocomposites.” Int. J. Appl. Innov. Eng. Manage, Vol 2(11), pp. 10-16, November 2013.
[8] Kaczer, B., Clima, S., Tomida, K., Govoreanu, B., Popovici, M., Kim, M. S., ... and Jurczak, M. “Considerations for further scaling of metal–insulator–metal DRAM capacitors.” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol 31(1), pp. 01A105. November 2012.
[9] Toomey, B., Cherkaoui, K., Monaghan, S., Djara, V., O’Connor, É., O’Connell, D., ... and Hurley, P. K. “The structural and electrical characterization of a HfErOx dielectric for MIM capacitor DRAM applications.” Microelectronic engineering, Vol 94, pp. 7-10, June 2012.
[10] Kim, K. N., Kwak, D. H., Hwang, Y. S., Jeong, G. T., Chung, T. Y., Park, B. J., ... and Joo, B. S. “A DRAM technology using MIM BST capacitor for 0.15/spl mu/m DRAM generation and beyond.” In 1999 Symposium on VLSI Technology. Digest of Technical Papers, IEEE Cat. No. 99CH36325, pp. 33-34, June 1999.
[11] Ng, C. H., Ho, C. S., Chu, S. F. S., & Sun, S. C. “MIM capacitor integration for mixed-signal/RF applications.” IEEE Transactions on electron devices, Vol 52(7), pp. 1399-1409. July 2005.
[12] Yeh, C. T., Chu, S. M., Yeh, Y. H., Ting, W. C., and Lu, C. Y. “Improvement of mim capacitor early breakdown by metal deposition process optimization and Ar sputter etch implementation.” In 2016 e-Manufacturing and Design Collaboration Symposium (eMDC), pp. 1-4, September 2016.
[13] Chaker, A., Bermond, C., Artillan, P., Gonon, P., Vallée, C., and Bsiesy, A. “Wide band frequency characterization of Al-doped and undoped rutile TiO2 thin films for MIM capacitors.” IEEE Electron Device Letters, Vol 38(3), pp. 375-378. March 2017.
[14] Kar-Roy, A., Hu, C., Racanelli, M., Compton, C. A., Kempf, P., Jolly, G., ... and Yin, A. “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits.” In Proceedings of the IEEE 1999 International Interconnect Technology Conference (Cat. No. 99EX247), pp. 245-247. May 1999.
[15] Kim, S. J., Cho, B. J., Li, M. F., Yu, X., Zhu, C., Chin, A., and Kwong, D. L. “PVD HfO2 for high-precision MIM capacitor applications.” IEEE Electron Device Letters, Vol 24(6), pp. 387-389. June 2003.
[16] Babcock, J. A., Balster, S. G., Pinto, A., Dirnecker, C., Steinmann, P., Jumpertz, R., and El-Kareh, B. “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics.” IEEE Electron Device Letters, Vol 22(5), pp, 230-232. May 2001.
[17] He, Z. X., Daley, D., Bolam, R., Vanslette, D., Chen, F., Cooney, E., ... and Dunn, J. “High and low density complimentary MIM capacitors fabricated simultaneously in advanced RFCMOS and BiCMOS technologies.” In 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 212-215). October 2008.
[18] Arnould, J. D., Benech, P., Cremer, S., Torres, J., and Farcy, A. “RF MIM capacitors using Si/sub 3/N/sub 4/dielectric in standard industrial BiCMOS technology.” In 2004 IEEE International Symposium on Industrial Electronics, Vol 1, pp. 27-30, May 2004.
[19] Kim, S. J., Cho, B. J., Yu, M. B., Li, M. F., Xiong, Y. Z., Zhu, C., ... and Kwong, D. L. “Metal-insulator-metal RF bypass capacitor using niobium oxide (Nb2O5) with HfO2/Al2O3 barriers.” IEEE electron device letters, Vol 26(9), pp. 625-627, August 2005.
[20] Amakawa, S., Goda, R., Katayama, K., Takano, K., Yoshida, T., and Fujishima, M. “Wideband CMOS decoupling power line for millimeter-wave applications.” In 2015 IEEE MTT-S International Microwave Symposium, pp. 1-4, May 2015.
[21] Moslehi, M. M., Fu, C. Y., Sigmon, T. W., and Saraswat, K. C. “Low‐temperature direct nitridation of silicon in nitrogen plasma generated by microwave discharge”. Journal of applied physics, Vol 58(6), pp. 2416-2419. March 1985.
[22] Shimoda, S., Shimizu, I., and Migitaka, M. “Chemical vapor deposition of a silicon nitride layer with an excellent interface by NH3 plasma treatment.” Applied physics letters, Vol 52(13), pp. 1068-1070, 1988.
[23] Saito, Y., Sekine, K., Hirayama, M., and Ohmi, T. “Low-temperature formation of silicon nitride film by direct nitridation employing high-density and low-energy ion bombardment.” Japanese journal of applied physics, Vol 38(4S), pp. 2329-2332, April 1999.
[24] Konofaos, N. “Electrical characterisation of SiON/n-Si structures for MOS VLSI electronics.” Microelectronics journal, Vol 35(5), pp. 421-425, May 2004.
[25] Barbottin, G., and Vapaille, A. New Insulators Devices and Radiation Effects. Elsevier, Netherland, 1999.
[26] On line resource: Intel, SIA, Wikichip, IC, Insights.
[27] Shahin, D. I., Tadjer, M. J., Wheeler, V. D., Koehler, A. D., Anderson, T. J., Eddy Jr, C. R., and Christou, A. “Electrical characterization of ALD HfO2 high-k dielectrics on (201) β-Ga2O3. Applied Physics Letters, Vol 112(4), pp. 042107, January 2018.
[28] Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., ... and Ghibaudo, G. “Review on high-k dielectrics reliability issues.” IEEE Transactions on Device and materials Reliability, Vol 5(1), pp. 5-19, June 2005.
[29] Tu, Y. L., Lin, H. L., Chao, L. L., Wu, D., Tsai, C. S., Wang, C., ... and Sun, J. “Characterization and comparison of high-k metal-insulator-metal (MiM) capacitors in 0.13/spl mu/m Cu BEOL for mixed-mode and RF applications.” In 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No. 03CH37407), pp. 79-80, June 2003.
[30] Lee, C. G., and Dodabalapur, A. “Solution-processed high-k dielectric, ZrO2, and integration in thin-film transistors.” Journal of electronic materials, Vol 41(5), pp.895-898. February 2012.
[31] Bera, M. K., & Maiti, C. K. “Electrical properties of SiO2/TiO2 high-k gate dielectric stack.” Materials Science in Semiconductor Processing, Vol 9(6), pp. 909-917. December 2006.
[32] Remmel, T., Ramprasad, R., and Walls, J. “Leakage behavior and reliability assessment of tantalum oxide dielectric MIM capacitors.” In 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual, pp. 277-281, March 2003.
[33] Smitha, P. S., Babu, V. S., & Shiny, G. “Critical parameters of high performance metal-insulator-metal nanocapacitors: A review.” Materials Research Express, Vol 6(12), pp. 122003. November 2019.
[34] Klootwijk, J. H., Jinesh, K. B., Dekkers, W., Verhoeven, J. F., Van den Heuvel, F. C., Kim, H. D., ... & Roozeboom, F. “Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon.” IEEE Electron Device Letters, Vol 29(7), pp. 740-742, July 2008.
[35] Kwak, H. Y., Kwon, H. M., Jung, Y. J., Kwon, S. K., Jang, J. H., Choi, W. I., ... and Lee, H. D. “Characterization of Al2O3–HfO2–Al2O3 sandwiched MIM capacitor under DC and AC stresses.” Solid-State Electronics, Vol 79, pp. 218-222. January 2013.
[36] Liu, J., Yang, H., Ma, Z., Chen, K., Zhang, X., Huang, X., & Oda, S. “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure.” Journal of Physics D: Applied Physics, Vol 51(2), pp. 025102. December 2017.
[37] Woo, J. C., Chun, Y. S., Joo, Y. H., & Kim, C. I. “Low leakage current in metal-insulator-metal capacitors of structural Al2O3/TiO2/Al2O3 dielectrics.” Applied Physics Letters, Vol 100(8), pp. 081101, February 2012.
[38] Chiang, K. C., Cheng, C. H., Pan, H. C., Hsiao, C. N., Chou, C. P., Chin, A., & Hwang, H. L. “High-temperature leakage improvement in metal–insulator–metal capacitors by work–function tuning.” IEEE electron device letters, Vol 28(3), pp. 235-237. February 2007.
[39] Cowell III, E. W., Alimardani, N., Knutson, C. C., Conley Jr, J. F., Keszler, D. A., Gibbons, B. J., and Wager, J. F. “Advancing MIM electronics: Amorphous metal electrodes.” Advanced Materials, Vol 23(1), pp. 74-78. October 2011.
[40] Giusi, G., Aoulaiche, M., Swerts, J., Popovici, M., Redolfi, A., Simoen, E., and Jurczak, M. “Impact of Electrode Composition and Processing on the Low-Frequency Noise in SrTiO3 MIM Capacitors.” IEEE Electron Device Letters, Vol 35(9), pp. 942-944, July 2014.
[41] Lee, H. C., and Park, O. O. “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering.” Vacuum, Vol 75(3), pp. 275-282, July 2004.
[42] Matino, F., Persano, L., Arima, V., Pisignano, D., Blyth, R. I. R., Cingolani, R., and Rinaldi, R. “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition.” Physical Review B, Vol 72(8), pp. 085437. August 2005.
[43] Zheng, T., Han, M., Xu, G., and Luo, L. “Design and fabrication of wafer level suspended high Q MIM capacitors for RF integrated passive devices.” Microsystem Technologies, Vol 23(1), pp. 67-73. August 2015.
[44] Albertin, K. F., and Pereyra, I. “Study of PECVD SiOxNy films dielectric properties with different nitrogen concentration utilizing MOS capacitors.” Microelectronic engineering, Vol 77(2), pp. 144-149, February 2005.
[45] Ling, C. H., Kwok, C. Y., and Prasad, K. “Plasma‐enhanced chemical vapor deposition SiN films: Some electrical properties.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 5(4), pp. 1874-1878, June 1988.
[46] Brown, D. M., Gray, P. V., Heumann, F. K., Philipp, H. R., and Taft, E. A. “Properties of SixOyNz Films on Si.” Journal of the Electrochemical Society, Vol 115(3), pp. 311-317, 1968.
[47] Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L. “Ultrathin (< 4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits.” Journal of Applied Physics, Vol 90(5), pp. 2057-2121, August 2001.
[48] Hajji, B., Temple-Boyer, P., Olivie, F., and Martinez, A. “Electrical characterisation of thin silicon oxynitride films deposited by low pressure chemical vapour deposition.” Thin Solid Films, Vol 354(1-2), pp. 9-12, October 1999.
[49] Frank, R. I., and Moberg, W. L. “Reactively sputtered silicon oxynitride as a dielectric material for metal‐insulator‐metal capacitors.” Journal of The Electrochemical Society, Vol 117(4), pp. 524, April 1970.
[50] Mirsch, S., and Bauer, J. “Properties of silicon nitride and silicon oxynitride films prepared by reactive sputtering.” physica status solidi (a), Vol 26(2), pp. 579-584. December 1974.
[51] Walsh, L. A., Mohammed, S., Sampat, S. C., Chabal, Y. J., Malko, A. V., and Hinkle, C. L. “Oxide-related defects in quantum dot containing Si-rich silicon nitride films.” Thin Solid Films, Vol 636, pp. 267-272, August 2017.
[52] Zhang, D., Qi, Z., Wei, B., Wu, Z., and Wang, Z. “Anticorrosive yet conductive Hf/Si3N4 multilayer coatings on AZ91D magnesium alloy by magnetron sputtering.” Surface and Coatings Technology, Vol 309, pp. 12-20, January 2017.
[53] Castanho, S. M., and Moreno, R. “Characterization of Si3N4 powders in aqueous dispersions.” Cerâmica, Vol 44, pp. 141-145, August 1998.
[54] Lee, C. C., Lee, K. H., Tang, C. J., Jaing, C. C., and Chen, H. C. “Reduction of residual stress in optical silicon nitcide thin films prepared by radio-frequency ion beam sputtering deposition.” Optical Engineering, Vol 49(6), pp. 063802, June 2010.
[55] Signore, M. A., Sytchkova, A., Dimaio, D., Cappello, A., and Rizzo, A. “Deposition of silicon nitride thin films by RF magnetron sputtering: a material and growth process study.” Optical materials, Vol 34(4), pp. 632-638. February 2012.
[56] Dutta, G., Hembram, K. P. S. S., Rao, G. M., and Waghmare, U. V. “Effects of O vacancies and C doping on dielectric properties of ZrO2: A first-principles study.” Applied Physics Letters, Vol 89(20), pp. 202904, October 2006.
[57] Kamoulakos, G., Kelaidis, C., Papadas, C., Vincent, E., Bruyere, S., Ghibaudo, G., ... and Ghidini, G. “Unified model for breakdown in thin and ultrathin gate oxides (12–5 nm).” Journal of applied physics, Vol 86(9), pp. 5131-5140. August 1999.
[58] Kato, H., Kashio, N., Ohki, Y., Seol, K. S., and Noma, T. “Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films.” Journal of Applied Physics, Vol 93(1), pp. 239-244, December 2003.
[59] Street, R. A. “Luminescence and recombination in hydrogenated amorphous silicon.” Advances in physics, Vol 30(5), pp. 593-676. June 1981.
[60] Debieu, O., Nalini, R. P., Cardin, J., Portier, X., Perrière, J., and Gourbilleau, F. “Structural and optical characterization of pure Si-rich nitride thin films.” Nanoscale research letters, Vol 8(1), pp. 1-13. January 2013.
[61] P. W. Lee, S. Mizuno, A. Verma, H. Tran, and B. Nguyen, "Dielectric Constant and Stability of Fluorine‐Doped Plasma Enhanced Chemical Vapor Deposited SiO2 Thin Films," Journal of the Electrochemical Society, Vol. 143(6), pp. 2015-2019, June 1996.
[62] S. Catalán Izquierdo, J. M. Bueno Barrachina, C. S. Cañas Peñuelas, and F. Cavallé Sesé, "Capacitance evaluation on parallel-plate capacitors by means of finite element analysis," Renewable energy and power quality journal, Vol. 1(7), pp. 613-616, April 2009.
[63] Iftiquar, S. M. “Structural studies on semiconducting hydrogenated amorphous silicon oxide films.” High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, India, Vol 6(1), 2002.
[64] Grill, A., and Neumayer, D. A. “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization.” Journal of applied physics, Vol 94(10), pp. 6697-6707, October 2003.
[65] J. Luo, Y. Zhou, S. T. Milner, C. G. Pantano, and S. H. Kim, “Molecular dynamics study of correlations between IR peak position and bond parameters of silica and silicate glasses: Effects of temperature and stress,” Journal of the American Ceramic Society, Vol. 101(1), pp. 178-188, August 2017.
[66] K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO 2 layers. Long-term evolution,” Applied optics, Vol. 35(25), pp. 5067-5072, 1996.
[67] J. Fitch, G. Lucovsky, E. Kobeda, and E. Irene, “Effects of thermal history on stress‐related properties of very thin films of thermally grown silicon dioxide,” Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 7(2), pp. 153-162, June 1989.
[68] K. Queeney, Y. Chabal, M. Weldon, and K. Raghavachari, “Silicon Oxidation and Ultra‐Thin Oxide Formation on Silicon Studied by Infrared Absorption Spectroscopy,” Physica status solidi (a), Vol. 175(1), pp. 77-88, September 1999.
[69] A. Sassella et al., “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 15(2), pp. 377-389, June 1999.
[70] Y.-H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films,” Journal of Applied Physics, Vol. 90(7), pp. 3367-3370, September 2001.
[71] Jensen, D. S., Kanyal, S. S., Madaan, N., Vail, M. A., Dadson, A. E., Engelhard, M. H., and Linford, M. R. “Silicon (100)/SiO2 by XPS.” Surface Science Spectra, Vol 20(1), pp. 36-42, September 2013.
[72] Yao, Y., and Zaera, F. “Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 34(1), pp. 01A101, August 2015.
[73] Biswas, P. K., De, A., Dua, L. K., and Chkoda, L. “Surface characterization of sol-gel derived indium tin oxide films on glass.” Bulletin of Materials Science, Vol 29(3), pp. 323-330, June 2006.
[74] Sayle, T. X. T., Parker, S. C., and Catlow, C. R. A. “The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide.” Surface Science, Vol 316(3), pp. 329-336, February 1994.
[75] Kim, J. H., Lee, J. H., Heo, Y. W., Kim, J. J., and Park, J. O. “Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering.” Journal of electroceramics, Vol 23(2), pp. 169-174, November 2009.
[76] On line resources: Standard electrode potential (data page), Wikipedia. https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
[77] Plumley, J. B., Cook, A. W., Larsen, C. A., Artyushkova, K., Han, S. M., Peng, T. L., and Kemp, R. A. “Crystallization of electrically conductive visibly transparent ITO thin films by wavelength-range-specific pulsed Xe arc lamp annealing.” Journal of Materials Science, Vol 53(18), pp. 12949-12960. June 2018.
[78] Helms, C. R., and Poindexter, E. H. “The silicon-silicon dioxide system: Its microstructure and imperfections.” Reports on Progress in Physics, Vol 57(8), pp. 791-852, August 1994.
[79] Li, F. M., and Nathan, A. “Silicon dioxide.” CCD Image Sensors in Deep-Ultraviolet: Degradation Behavior and Damage Mechanisms, pp. 51-79, 2005.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2022-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明