參考文獻 |
[1] Küchler, A., Insulating Materials. In: High Voltage Engineering. VDI-Buch. Springer Vieweg, Berlin, Heidelberg, 2018.
[2] Contreras, José E., and Eden A. Rodriguez. "Nanostructured insulators–A review of nanotechnology concepts for outdoor ceramic insulators." Ceramics International, Vol 43(12), pp. 8545-8550, August 2017.
[3] Tahalyani, J., Akhtar, M. J., Cherusseri, J., and Kar, K. K. Characteristics of capacitor: fundamental aspects. In Handbook of Nanocomposite Supercapacitor Materials I. pp. 1-51, Springer, Cham, 2020.
[4] Wang, B., Huang, W., Chi, L., Al-Hashimi, M., Marks, T. J., and Facchetti, A. “High-k gate dielectrics for emerging flexible and stretchable electronics.” Chemical reviews, Vol 118(11), pp. 5690-5754, May 2018.
[5] Dakin, T. W. “Conduction and polarization mechanisms and trends in dielectric.“ IEEE Electrical Insulation Magazine, Vol 22(5), pp. 11-28, October 2006.
[6] Areef Billah, A. H. M. “Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication.” Bangladesh University, degree of master, May 2016.
[7] Kadhim, M. J., Abdullah, A. K., Al-Ajaj, I. A., and Khalil, A. S. “Mechanical properties of epoxy/Al2O3 nanocomposites.” Int. J. Appl. Innov. Eng. Manage, Vol 2(11), pp. 10-16, November 2013.
[8] Kaczer, B., Clima, S., Tomida, K., Govoreanu, B., Popovici, M., Kim, M. S., ... and Jurczak, M. “Considerations for further scaling of metal–insulator–metal DRAM capacitors.” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol 31(1), pp. 01A105. November 2012.
[9] Toomey, B., Cherkaoui, K., Monaghan, S., Djara, V., O’Connor, É., O’Connell, D., ... and Hurley, P. K. “The structural and electrical characterization of a HfErOx dielectric for MIM capacitor DRAM applications.” Microelectronic engineering, Vol 94, pp. 7-10, June 2012.
[10] Kim, K. N., Kwak, D. H., Hwang, Y. S., Jeong, G. T., Chung, T. Y., Park, B. J., ... and Joo, B. S. “A DRAM technology using MIM BST capacitor for 0.15/spl mu/m DRAM generation and beyond.” In 1999 Symposium on VLSI Technology. Digest of Technical Papers, IEEE Cat. No. 99CH36325, pp. 33-34, June 1999.
[11] Ng, C. H., Ho, C. S., Chu, S. F. S., & Sun, S. C. “MIM capacitor integration for mixed-signal/RF applications.” IEEE Transactions on electron devices, Vol 52(7), pp. 1399-1409. July 2005.
[12] Yeh, C. T., Chu, S. M., Yeh, Y. H., Ting, W. C., and Lu, C. Y. “Improvement of mim capacitor early breakdown by metal deposition process optimization and Ar sputter etch implementation.” In 2016 e-Manufacturing and Design Collaboration Symposium (eMDC), pp. 1-4, September 2016.
[13] Chaker, A., Bermond, C., Artillan, P., Gonon, P., Vallée, C., and Bsiesy, A. “Wide band frequency characterization of Al-doped and undoped rutile TiO2 thin films for MIM capacitors.” IEEE Electron Device Letters, Vol 38(3), pp. 375-378. March 2017.
[14] Kar-Roy, A., Hu, C., Racanelli, M., Compton, C. A., Kempf, P., Jolly, G., ... and Yin, A. “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits.” In Proceedings of the IEEE 1999 International Interconnect Technology Conference (Cat. No. 99EX247), pp. 245-247. May 1999.
[15] Kim, S. J., Cho, B. J., Li, M. F., Yu, X., Zhu, C., Chin, A., and Kwong, D. L. “PVD HfO2 for high-precision MIM capacitor applications.” IEEE Electron Device Letters, Vol 24(6), pp. 387-389. June 2003.
[16] Babcock, J. A., Balster, S. G., Pinto, A., Dirnecker, C., Steinmann, P., Jumpertz, R., and El-Kareh, B. “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics.” IEEE Electron Device Letters, Vol 22(5), pp, 230-232. May 2001.
[17] He, Z. X., Daley, D., Bolam, R., Vanslette, D., Chen, F., Cooney, E., ... and Dunn, J. “High and low density complimentary MIM capacitors fabricated simultaneously in advanced RFCMOS and BiCMOS technologies.” In 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 212-215). October 2008.
[18] Arnould, J. D., Benech, P., Cremer, S., Torres, J., and Farcy, A. “RF MIM capacitors using Si/sub 3/N/sub 4/dielectric in standard industrial BiCMOS technology.” In 2004 IEEE International Symposium on Industrial Electronics, Vol 1, pp. 27-30, May 2004.
[19] Kim, S. J., Cho, B. J., Yu, M. B., Li, M. F., Xiong, Y. Z., Zhu, C., ... and Kwong, D. L. “Metal-insulator-metal RF bypass capacitor using niobium oxide (Nb2O5) with HfO2/Al2O3 barriers.” IEEE electron device letters, Vol 26(9), pp. 625-627, August 2005.
[20] Amakawa, S., Goda, R., Katayama, K., Takano, K., Yoshida, T., and Fujishima, M. “Wideband CMOS decoupling power line for millimeter-wave applications.” In 2015 IEEE MTT-S International Microwave Symposium, pp. 1-4, May 2015.
[21] Moslehi, M. M., Fu, C. Y., Sigmon, T. W., and Saraswat, K. C. “Low‐temperature direct nitridation of silicon in nitrogen plasma generated by microwave discharge”. Journal of applied physics, Vol 58(6), pp. 2416-2419. March 1985.
[22] Shimoda, S., Shimizu, I., and Migitaka, M. “Chemical vapor deposition of a silicon nitride layer with an excellent interface by NH3 plasma treatment.” Applied physics letters, Vol 52(13), pp. 1068-1070, 1988.
[23] Saito, Y., Sekine, K., Hirayama, M., and Ohmi, T. “Low-temperature formation of silicon nitride film by direct nitridation employing high-density and low-energy ion bombardment.” Japanese journal of applied physics, Vol 38(4S), pp. 2329-2332, April 1999.
[24] Konofaos, N. “Electrical characterisation of SiON/n-Si structures for MOS VLSI electronics.” Microelectronics journal, Vol 35(5), pp. 421-425, May 2004.
[25] Barbottin, G., and Vapaille, A. New Insulators Devices and Radiation Effects. Elsevier, Netherland, 1999.
[26] On line resource: Intel, SIA, Wikichip, IC, Insights.
[27] Shahin, D. I., Tadjer, M. J., Wheeler, V. D., Koehler, A. D., Anderson, T. J., Eddy Jr, C. R., and Christou, A. “Electrical characterization of ALD HfO2 high-k dielectrics on (201) β-Ga2O3. Applied Physics Letters, Vol 112(4), pp. 042107, January 2018.
[28] Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., ... and Ghibaudo, G. “Review on high-k dielectrics reliability issues.” IEEE Transactions on Device and materials Reliability, Vol 5(1), pp. 5-19, June 2005.
[29] Tu, Y. L., Lin, H. L., Chao, L. L., Wu, D., Tsai, C. S., Wang, C., ... and Sun, J. “Characterization and comparison of high-k metal-insulator-metal (MiM) capacitors in 0.13/spl mu/m Cu BEOL for mixed-mode and RF applications.” In 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No. 03CH37407), pp. 79-80, June 2003.
[30] Lee, C. G., and Dodabalapur, A. “Solution-processed high-k dielectric, ZrO2, and integration in thin-film transistors.” Journal of electronic materials, Vol 41(5), pp.895-898. February 2012.
[31] Bera, M. K., & Maiti, C. K. “Electrical properties of SiO2/TiO2 high-k gate dielectric stack.” Materials Science in Semiconductor Processing, Vol 9(6), pp. 909-917. December 2006.
[32] Remmel, T., Ramprasad, R., and Walls, J. “Leakage behavior and reliability assessment of tantalum oxide dielectric MIM capacitors.” In 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual, pp. 277-281, March 2003.
[33] Smitha, P. S., Babu, V. S., & Shiny, G. “Critical parameters of high performance metal-insulator-metal nanocapacitors: A review.” Materials Research Express, Vol 6(12), pp. 122003. November 2019.
[34] Klootwijk, J. H., Jinesh, K. B., Dekkers, W., Verhoeven, J. F., Van den Heuvel, F. C., Kim, H. D., ... & Roozeboom, F. “Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon.” IEEE Electron Device Letters, Vol 29(7), pp. 740-742, July 2008.
[35] Kwak, H. Y., Kwon, H. M., Jung, Y. J., Kwon, S. K., Jang, J. H., Choi, W. I., ... and Lee, H. D. “Characterization of Al2O3–HfO2–Al2O3 sandwiched MIM capacitor under DC and AC stresses.” Solid-State Electronics, Vol 79, pp. 218-222. January 2013.
[36] Liu, J., Yang, H., Ma, Z., Chen, K., Zhang, X., Huang, X., & Oda, S. “Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure.” Journal of Physics D: Applied Physics, Vol 51(2), pp. 025102. December 2017.
[37] Woo, J. C., Chun, Y. S., Joo, Y. H., & Kim, C. I. “Low leakage current in metal-insulator-metal capacitors of structural Al2O3/TiO2/Al2O3 dielectrics.” Applied Physics Letters, Vol 100(8), pp. 081101, February 2012.
[38] Chiang, K. C., Cheng, C. H., Pan, H. C., Hsiao, C. N., Chou, C. P., Chin, A., & Hwang, H. L. “High-temperature leakage improvement in metal–insulator–metal capacitors by work–function tuning.” IEEE electron device letters, Vol 28(3), pp. 235-237. February 2007.
[39] Cowell III, E. W., Alimardani, N., Knutson, C. C., Conley Jr, J. F., Keszler, D. A., Gibbons, B. J., and Wager, J. F. “Advancing MIM electronics: Amorphous metal electrodes.” Advanced Materials, Vol 23(1), pp. 74-78. October 2011.
[40] Giusi, G., Aoulaiche, M., Swerts, J., Popovici, M., Redolfi, A., Simoen, E., and Jurczak, M. “Impact of Electrode Composition and Processing on the Low-Frequency Noise in SrTiO3 MIM Capacitors.” IEEE Electron Device Letters, Vol 35(9), pp. 942-944, July 2014.
[41] Lee, H. C., and Park, O. O. “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering.” Vacuum, Vol 75(3), pp. 275-282, July 2004.
[42] Matino, F., Persano, L., Arima, V., Pisignano, D., Blyth, R. I. R., Cingolani, R., and Rinaldi, R. “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition.” Physical Review B, Vol 72(8), pp. 085437. August 2005.
[43] Zheng, T., Han, M., Xu, G., and Luo, L. “Design and fabrication of wafer level suspended high Q MIM capacitors for RF integrated passive devices.” Microsystem Technologies, Vol 23(1), pp. 67-73. August 2015.
[44] Albertin, K. F., and Pereyra, I. “Study of PECVD SiOxNy films dielectric properties with different nitrogen concentration utilizing MOS capacitors.” Microelectronic engineering, Vol 77(2), pp. 144-149, February 2005.
[45] Ling, C. H., Kwok, C. Y., and Prasad, K. “Plasma‐enhanced chemical vapor deposition SiN films: Some electrical properties.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 5(4), pp. 1874-1878, June 1988.
[46] Brown, D. M., Gray, P. V., Heumann, F. K., Philipp, H. R., and Taft, E. A. “Properties of SixOyNz Films on Si.” Journal of the Electrochemical Society, Vol 115(3), pp. 311-317, 1968.
[47] Green, M. L., Gusev, E. P., Degraeve, R., and Garfunkel, E. L. “Ultrathin (< 4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits.” Journal of Applied Physics, Vol 90(5), pp. 2057-2121, August 2001.
[48] Hajji, B., Temple-Boyer, P., Olivie, F., and Martinez, A. “Electrical characterisation of thin silicon oxynitride films deposited by low pressure chemical vapour deposition.” Thin Solid Films, Vol 354(1-2), pp. 9-12, October 1999.
[49] Frank, R. I., and Moberg, W. L. “Reactively sputtered silicon oxynitride as a dielectric material for metal‐insulator‐metal capacitors.” Journal of The Electrochemical Society, Vol 117(4), pp. 524, April 1970.
[50] Mirsch, S., and Bauer, J. “Properties of silicon nitride and silicon oxynitride films prepared by reactive sputtering.” physica status solidi (a), Vol 26(2), pp. 579-584. December 1974.
[51] Walsh, L. A., Mohammed, S., Sampat, S. C., Chabal, Y. J., Malko, A. V., and Hinkle, C. L. “Oxide-related defects in quantum dot containing Si-rich silicon nitride films.” Thin Solid Films, Vol 636, pp. 267-272, August 2017.
[52] Zhang, D., Qi, Z., Wei, B., Wu, Z., and Wang, Z. “Anticorrosive yet conductive Hf/Si3N4 multilayer coatings on AZ91D magnesium alloy by magnetron sputtering.” Surface and Coatings Technology, Vol 309, pp. 12-20, January 2017.
[53] Castanho, S. M., and Moreno, R. “Characterization of Si3N4 powders in aqueous dispersions.” Cerâmica, Vol 44, pp. 141-145, August 1998.
[54] Lee, C. C., Lee, K. H., Tang, C. J., Jaing, C. C., and Chen, H. C. “Reduction of residual stress in optical silicon nitcide thin films prepared by radio-frequency ion beam sputtering deposition.” Optical Engineering, Vol 49(6), pp. 063802, June 2010.
[55] Signore, M. A., Sytchkova, A., Dimaio, D., Cappello, A., and Rizzo, A. “Deposition of silicon nitride thin films by RF magnetron sputtering: a material and growth process study.” Optical materials, Vol 34(4), pp. 632-638. February 2012.
[56] Dutta, G., Hembram, K. P. S. S., Rao, G. M., and Waghmare, U. V. “Effects of O vacancies and C doping on dielectric properties of ZrO2: A first-principles study.” Applied Physics Letters, Vol 89(20), pp. 202904, October 2006.
[57] Kamoulakos, G., Kelaidis, C., Papadas, C., Vincent, E., Bruyere, S., Ghibaudo, G., ... and Ghidini, G. “Unified model for breakdown in thin and ultrathin gate oxides (12–5 nm).” Journal of applied physics, Vol 86(9), pp. 5131-5140. August 1999.
[58] Kato, H., Kashio, N., Ohki, Y., Seol, K. S., and Noma, T. “Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films.” Journal of Applied Physics, Vol 93(1), pp. 239-244, December 2003.
[59] Street, R. A. “Luminescence and recombination in hydrogenated amorphous silicon.” Advances in physics, Vol 30(5), pp. 593-676. June 1981.
[60] Debieu, O., Nalini, R. P., Cardin, J., Portier, X., Perrière, J., and Gourbilleau, F. “Structural and optical characterization of pure Si-rich nitride thin films.” Nanoscale research letters, Vol 8(1), pp. 1-13. January 2013.
[61] P. W. Lee, S. Mizuno, A. Verma, H. Tran, and B. Nguyen, "Dielectric Constant and Stability of Fluorine‐Doped Plasma Enhanced Chemical Vapor Deposited SiO2 Thin Films," Journal of the Electrochemical Society, Vol. 143(6), pp. 2015-2019, June 1996.
[62] S. Catalán Izquierdo, J. M. Bueno Barrachina, C. S. Cañas Peñuelas, and F. Cavallé Sesé, "Capacitance evaluation on parallel-plate capacitors by means of finite element analysis," Renewable energy and power quality journal, Vol. 1(7), pp. 613-616, April 2009.
[63] Iftiquar, S. M. “Structural studies on semiconducting hydrogenated amorphous silicon oxide films.” High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, India, Vol 6(1), 2002.
[64] Grill, A., and Neumayer, D. A. “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization.” Journal of applied physics, Vol 94(10), pp. 6697-6707, October 2003.
[65] J. Luo, Y. Zhou, S. T. Milner, C. G. Pantano, and S. H. Kim, “Molecular dynamics study of correlations between IR peak position and bond parameters of silica and silicate glasses: Effects of temperature and stress,” Journal of the American Ceramic Society, Vol. 101(1), pp. 178-188, August 2017.
[66] K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO 2 layers. Long-term evolution,” Applied optics, Vol. 35(25), pp. 5067-5072, 1996.
[67] J. Fitch, G. Lucovsky, E. Kobeda, and E. Irene, “Effects of thermal history on stress‐related properties of very thin films of thermally grown silicon dioxide,” Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 7(2), pp. 153-162, June 1989.
[68] K. Queeney, Y. Chabal, M. Weldon, and K. Raghavachari, “Silicon Oxidation and Ultra‐Thin Oxide Formation on Silicon Studied by Infrared Absorption Spectroscopy,” Physica status solidi (a), Vol. 175(1), pp. 77-88, September 1999.
[69] A. Sassella et al., “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 15(2), pp. 377-389, June 1999.
[70] Y.-H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films,” Journal of Applied Physics, Vol. 90(7), pp. 3367-3370, September 2001.
[71] Jensen, D. S., Kanyal, S. S., Madaan, N., Vail, M. A., Dadson, A. E., Engelhard, M. H., and Linford, M. R. “Silicon (100)/SiO2 by XPS.” Surface Science Spectra, Vol 20(1), pp. 36-42, September 2013.
[72] Yao, Y., and Zaera, F. “Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 34(1), pp. 01A101, August 2015.
[73] Biswas, P. K., De, A., Dua, L. K., and Chkoda, L. “Surface characterization of sol-gel derived indium tin oxide films on glass.” Bulletin of Materials Science, Vol 29(3), pp. 323-330, June 2006.
[74] Sayle, T. X. T., Parker, S. C., and Catlow, C. R. A. “The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide.” Surface Science, Vol 316(3), pp. 329-336, February 1994.
[75] Kim, J. H., Lee, J. H., Heo, Y. W., Kim, J. J., and Park, J. O. “Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering.” Journal of electroceramics, Vol 23(2), pp. 169-174, November 2009.
[76] On line resources: Standard electrode potential (data page), Wikipedia. https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)
[77] Plumley, J. B., Cook, A. W., Larsen, C. A., Artyushkova, K., Han, S. M., Peng, T. L., and Kemp, R. A. “Crystallization of electrically conductive visibly transparent ITO thin films by wavelength-range-specific pulsed Xe arc lamp annealing.” Journal of Materials Science, Vol 53(18), pp. 12949-12960. June 2018.
[78] Helms, C. R., and Poindexter, E. H. “The silicon-silicon dioxide system: Its microstructure and imperfections.” Reports on Progress in Physics, Vol 57(8), pp. 791-852, August 1994.
[79] Li, F. M., and Nathan, A. “Silicon dioxide.” CCD Image Sensors in Deep-Ultraviolet: Degradation Behavior and Damage Mechanisms, pp. 51-79, 2005. |