博碩士論文 108827604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:18.225.56.79
姓名 王威(Wei Wang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 用深度學習理論做時域、頻域相關的腦電特徵多類別的分類
(Time- and frequency- related EEG features for multi-category classification using deep learning method)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-20以後開放)
摘要(中) 深度學習是機器學習中一種基於對資料進行表徵學習的演算法。
根據過去的研究,要在實驗中,找到不同任務下不同腦電訊號的特徵,並將它們做出提取分類的動作一直是一個挑戰。利用時域特徵和頻域特徵分不同的類別(2-4類),準確率也是在60%-80%之間。
本研究的目的在於運用深度學習技術,對EEG進行多類別分類,建立一個高分類準確率的深度學習模型。本研究通過對受試者進行視覺刺激,對他們腦電訊號的研究,分析了14個channels的時域和頻域訊號、抓取他們腦袋中對於“前、後、左、右、停”五個方位的特徵,並通過這些特徵,進行多類別的分類。目前我們做了3個人,每人7次,共計21次實驗,每次實驗會有20筆資料每筆資料有5個類別,收集資料的取樣率為512Hz,現已經取得了初步的成果,我們在對14個channels進行了去除EOG雜訊以後,運用Keras深度學習框架,採用監督學習(supervised learning)的方式,分析了它們在不同類別時域方面的最大值(及其latency)、最小值(及其latency)、平均值資料,用k-fold驗證來驗證模型成效,得到了81.00%的準確度;用同樣的方式分析了它們頻域方面的特徵資料,選取1-58HZ的波段,將它們分成Delta (1-3), Theta (4-7), Alpha (8-14), Beta (13-28), Gamma (29-58)五個頻段,得到了78.10%的準確率。結合時域和頻域的特徵,得到了83.40%的準確率。運用T檢定,進行特徵的篩選比對,並使用CNN和MLP兩種模型進行訓練驗證後,我們發現在MLP模型下,用時域+頻域的特徵,篩選一個以上顯著特徵的分類平均準確率最高,可達87.41%。
摘要(英) Deep learning is an algorithm in machine learning that is based on representational learning of data. The basis of deep learning is the decentralized representation in machine learning.
According to past studies, it has been a challenge to find the features of different brain signals under different tasks and make them for extraction and classification in the experiments. The accuracy of using time domain features and frequency domain features in different categories (2-4 categories) is about 60%-80%.
The purpose of this study is to develop a multi-output brainwave signal extraction model using deep learning techniques, that is, to extend the BCI to multiple categories (5 types in total) of outputs. The time and frequency domain signals of the 14 channels were analyzed to capture the features of "front, back, left, right and stop" in their brains, and these features were used to classify them into multiple categories. At present, we have done 3 people, 7 times each, total 21 experiments, each experiment will have 20 data each data has 5 categories, the sampling rate of the collected data is 512Hz, now we have achieved the initial results, we have done 14 channels after removing the EOG noise, using the Keras deep learning framework, using supervised learning (supervised learning) We analyzed the maximum (and its latency), minimum (and its latency), and average data in different types of time domain using Keras deep learning framework, and verified the effectiveness of the model with k-fold validation, and obtained 81.00% accuracy; we analyzed the feature data in frequency domain in the same way, and selected the band of 1-58Hz, and divided them into Delta (1-58Hz), Delta (1-58Hz), and Delta (1-58Hz). In the same way, we analyzed their frequency characteristics, and divided them into five frequency bands: Delta (1-3), Theta (4-7), Alpha (8-14), Beta (13-28), Gamma (29-58), and obtained 78.10% accuracy. Combining the features in the time and frequency domains, an accuracy of 83.40% was obtained. After the t-checking, feature filtering, and training with both CNN and MLP models, we found that the highest average accuracy of 87.41% was achieved by filtering more than one significant feature with time domain+frequency domain features under the MLP model.
關鍵字(中) ★ 腦電圖
★ 深度學習
★ T-檢定
★ 多分類
關鍵字(英) ★ Electroencephalography
★ Deep Learning
★ t-test
★ multi-class
論文目次 中文摘要 ………………………………………………… i
英文摘要 ………………………………………………… ii
誌謝 ………………………………………………… iv
目錄 ………………………………………………… v
圖目錄 ………………………………………………… vi
表目錄 ………………………………………………… vii
一. 緒論…………………………………………… 1
1.1 深度學習與分類器…………………………… 1
1.2 腦波文獻回顧………………………………… 2
1.3 研究動機與目的……………………………… 6
二、 研究方法與流程……………………………… 7
2.1 實驗設計……………………………………… 7
2.2 實驗儀器與參數……………………………… 7
2.3 實驗流程與理論……………………………… 8
2.4 深度學習分類………………………………… 13
2.5 T-test統計與特徵選取……………………… 18
三、 實驗結果……………………………………… 20
3.1 時域頻域各自準確率及整合準確率分析比對 20
3.2 類別數與準確性的關係……………………… 21
3.3 根據t-test篩選特徵,並用MLP和CNN演算法得到的結果比對…………………………… 22
四、 討論與結論…………………………………… 26
五、 未來展望……………………………………… 29
參考文獻 ………………………………………………… 32
參考文獻 [1] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, pp. 436-444, 2015.
[2] X. Qi, T. Wang, and J. Liu, "Comparison of support vector machine and softmax classifiers in computer vision," in 2017 Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 2017, pp. 151-155.
[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al., "Mastering the game of Go with deep neural networks and tree search," nature, vol. 529, pp. 484-489, 2016.
[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, et al., "Mastering the game of go without human knowledge," nature, vol. 550, pp. 354-359, 2017.
[5] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, et al., "Deep learning for health informatics," IEEE journal of biomedical and health informatics, vol. 21, pp. 4-21, 2016.
[6] 张海军 and 王浩川, "多导联EEG信号分类识别研究," 计算机工程与应用, vol. 44, p. 3, 2008.
[7] S. Sanei and J. A. Chambers, EEG signal processing: John Wiley & Sons, 2013.
[8] J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields: Oxford University Press, USA, 1995.
[9] E. Y. Lew, R. Chavarriaga, S. Silvoni, and J. d. R. Millán, "Single trial prediction of self-paced reaching directions from EEG signals," Frontiers in neuroscience, vol. 8, p. 222, 2014.
[10] B. R. Cahn and J. Polich, "Meditation states and traits: EEG, ERP, and neuroimaging studies," Psychological bulletin, vol. 132, p. 180, 2006.
[11] R. İnce, S. S. Adanır, and F. Sevmez, "The inventor of electroencephalography (EEG): Hans Berger (1873–1941)," Child′s Nervous System, pp. 1-2, 2020.
[12] E. Angelakis, J. F. Lubar, S. Stathopoulou, and J. Kounios, "Peak alpha frequency: an electroencephalographic measure of cognitive preparedness," Clinical Neurophysiology, vol. 115, pp. 887-897, 2004.
[13] N. A. Busch and R. VanRullen, "Spontaneous EEG oscillations reveal periodic sampling of visual attention," Proceedings of the National Academy of Sciences, vol. 107, pp. 16048-16053, 2010.
[14] S. Hanslmayr, J. Gross, W. Klimesch, and K. L. Shapiro, "The role of alpha oscillations in temporal attention," Brain research reviews, vol. 67, pp. 331-343, 2011.
[15] W. Klimesch, "EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis," Brain research reviews, vol. 29, pp. 169-195, 1999.
[16] M. Rangaswamy, B. Porjesz, D. B. Chorlian, K. Wang, K. A. Jones, L. O. Bauer, et al., "Beta power in the EEG of alcoholics," Biological psychiatry, vol. 52, pp. 831-842, 2002.
[17] G. Pfurtscheller and F. L. Da Silva, "Event-related EEG/MEG synchronization and desynchronization: basic principles," Clinical neurophysiology, vol. 110, pp. 1842-1857, 1999.
[18] D. A. McCormick, M. J. McGinley, and D. B. Salkoff, "Brain state dependent activity in the cortex and thalamus," Current opinion in neurobiology, vol. 31, pp. 133-140, 2015.
[19] J. Baumeister, T. Barthel, K.-R. Geiss, and M. Weiss, "Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress," Nutritional neuroscience, vol. 11, pp. 103-110, 2008.
[20] S. J. Luck, An introduction to the event-related potential technique: MIT press, 2014.
[21] S. Sur and V. K. Sinha, "Event-related potential: An overview," Industrial psychiatry journal, vol. 18, p. 70, 2009.
[22] D. Friedman and R. Johnson Jr, "Event‐related potential (ERP) studies of memory encoding and retrieval: A selective review," Microscopy research and technique, vol. 51, pp. 6-28, 2000.
[23] T. W. Picton, S. Bentin, P. Berg, E. Donchin, S. Hillyard, R. Johnson, et al., "Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria," Psychophysiology, vol. 37, pp. 127-152, 2000.
[24] T. W. Picton and S. A. Hillyard, "Human auditory evoked potentials. II: Effects of attention," Electroencephalography and clinical neurophysiology, vol. 36, pp. 191-200, 1974.
[25] C. S. Herrmann and R. T. Knight, "Mechanisms of human attention: event-related potentials and oscillations," Neuroscience & Biobehavioral Reviews, vol. 25, pp. 465-476, 2001.
[26] R. Näätänen, "Implications of ERP data for psychological theories of attention," Biological psychology, vol. 26, pp. 117-163, 1988.
[27] G. F. Woodman, "A brief introduction to the use of event-related potentials in studies of perception and attention," Attention, Perception, & Psychophysics, vol. 72, pp. 2031-2046, 2010.
[28] M. Butt, G. Naghdy, F. Naghdy, G. Murray, and H. Du, "Effect of Robot-Assisted Training on EEG-Derived Movement-Related Cortical Potentials for Post-Stroke Rehabilitation–A Case Series Study," IEEE Access, vol. 9, pp. 154143-154155, 2021.
[29] H. Shibasaki and M. Hallett, "What is the Bereitschaftspotential?," Clinical neurophysiology, vol. 117, pp. 2341-2356, 2006.
[30] M. J. Taylor, "Bereitschaftspotential during the acquisition of a skilled motor task," Electroencephalography and clinical neurophysiology, vol. 45, pp. 568-576, 1978.
[31] W. Lang, M. Lang, A. Kornhuber, L. Deecke, and H. Kornhuber, "Human cerebral potentials and visuomotor learning," Pflügers Archiv, vol. 399, pp. 342-344, 1983.
[32] J. Niemann, T. Winker, J. Gerling, B. Landwehrmeyer, and R. Jung, "Changes of slow cortical negative DC-potentials during the acquisition of a complex finger motor task," Experimental brain research, vol. 85, pp. 417-422, 1991.
[33] W. R. Staines, M. Padilla, and R. T. Knight, "Frontal–parietal event-related potential changes associated with practising a novel visuomotor task," Cognitive Brain Research, vol. 13, pp. 195-202, 2002.
[34] A. L. Smith and W. R. Staines, "Cortical adaptations and motor performance improvements associated with short-term bimanual training," Brain research, vol. 1071, pp. 165-174, 2006.
[35] D. J. Wright, P. Holmes, F. Di Russo, M. Loporto, and D. Smith, "Reduced motor cortex activity during movement preparation following a period of motor skill practice," PloS one, vol. 7, p. e51886, 2012.
[36] M. Jochumsen, C. Rovsing, H. Rovsing, S. Cremoux, N. Signal, K. Allen, et al., "Quantification of movement-related eeg correlates associated with motor training: A study on movement-related cortical potentials and sensorimotor rhythms," Frontiers in human neuroscience, vol. 11, p. 604, 2017.
[37] L. Deecke and H. H. Kornhuber, "Human freedom, reasoned will, and the brain: The Bereitschaftspotential story," in The Bereitschaftspotential, ed: Springer, 2003, pp. 283-320.
[38] A. Ikeda and H. Shibasaki, "Generator mechanisms of Bereitschaftspotentials as studied by epicortical recording in patients with intractable partial epilepsy," in The Bereitschaftspotential, ed: Springer, 2003, pp. 45-59.
[39] K. Toma and M. Hallett, "Generators of the movement-related cortical potentials and dipole source analysis," in The Bereitschaftspotential, ed: Springer, 2003, pp. 113-130.
[40] K. Bötzel, C. Ecker, and S. Schulze, "Topography and dipole analysis of reafferent electrical brain activity following the Bereitschaftspotential," Experimental Brain Research, vol. 114, pp. 352-361, 1997.
[41] J. Long, Y. Li, H. Wang, T. Yu, J. Pan, and F. Li, "A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, pp. 720-729, 2012.
[42] R. Chaisaen, P. Autthasan, N. Mingchinda, P. Leelaarporn, N. Kunaseth, S. Tammajarung, et al., "Decoding eeg rhythms during action observation, motor imagery, and execution for standing and sitting," IEEE Sensors Journal, vol. 20, pp. 13776-13786, 2020.
[43] S. R. Carvalho, I. Cordeiro Filho, D. O. De Resende, A. C. Siravenha, C. R. De Souza, H. Debarba, et al., "A deep learning approach for classification of reaching targets from EEG images," in 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2017, pp. 178-184.
[44] Y. Song, D. Wang, K. Yue, N. Zheng, and Z.-J. M. Shen, "EEG-based motor imagery classification with deep multi-task learning," in 2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1-8.
[45] Y. Wang and S. Makeig, "Predicting intended movement direction using EEG from human posterior parietal cortex," in International Conference on Foundations of Augmented Cognition, 2009, pp. 437-446.
[46] M. M. O. Rashid and M. Ahmad, "Multiclass motor imagery classification for BCI application," in 2016 International Workshop on Computational Intelligence (IWCI), 2016, pp. 35-40.
[47] A. Schlögl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb, and G. Pfurtscheller, "A fully automated correction method of EOG artifacts in EEG recordings," Clinical neurophysiology, vol. 118, pp. 98-104, 2007.
[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.
[49] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat′s visual cortex," The Journal of physiology, vol. 160, pp. 106-154, 1962.
[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, pp. 1097-1105, 2012.
[51] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in European conference on computer vision, 2014, pp. 818-833.
[52] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.
[54] J. Li, Y. Wang, L. Zhang, and T.-P. Jung, "Combining ERPs and EEG spectral features for decoding intended movement direction," in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 1769-1772.
[55] M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Optimizing the channel selection and classification accuracy in EEG-based BCI," IEEE Transactions on Biomedical Engineering, vol. 58, pp. 1865-1873, 2011.
[56] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, et al., "A direct brain interface based on event-related potentials," IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 180-185, 2000.
[57] Y. Chae, J. Jeong, and S. Jo, "Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI," IEEE Transactions on Robotics, vol. 28, pp. 1131-1144, 2012.
[58] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis, "Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex," Nature neuroscience, vol. 2, pp. 664-670, 1999.
[59] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, et al., "Real-time prediction of hand trajectory by ensembles of cortical neurons in primates," Nature, vol. 408, pp. 361-365, 2000.
[60] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, "Instant neural control of a movement signal," Nature, vol. 416, pp. 141-142, 2002.
[61] M. A. Nicolelis, "Brain–machine interfaces to restore motor function and probe neural circuits," Nature Reviews Neuroscience, vol. 4, pp. 417-422, 2003.
[62] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, "Direct cortical control of 3D neuroprosthetic devices," Science, vol. 296, pp. 1829-1832, 2002.
[63] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, et al., "Brain-computer interface technology: a review of the first international meeting," IEEE transactions on rehabilitation engineering, vol. 8, pp. 164-173, 2000.
[64] J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans," Proceedings of the national academy of sciences, vol. 101, pp. 17849-17854, 2004.
[65] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, et al., "Current trends in Graz brain-computer interface (BCI) research," IEEE transactions on rehabilitation engineering, vol. 8, pp. 216-219, 2000.
[66] J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner, "Noninvasive brain-actuated control of a mobile robot by human EEG," IEEE Transactions on biomedical Engineering, vol. 51, pp. 1026-1033, 2004.
[67] J. Vora, B. Allison, and M. Moore, "A P3 brain computer interface for robot arm control," Society for Neuroscience Abstract 30, Program No, vol. 421, 2004.
[68] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, et al., "A brain-controlled wheelchair based on P300 and path guidance," in The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., 2006, pp. 1101-1106.
[69] I. Iturrate, J. M. Antelis, A. Kubler, and J. Minguez, "A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation," IEEE transactions on robotics, vol. 25, pp. 614-627, 2009.
[70] C. J. Bell, P. Shenoy, R. Chalodhorn, and R. P. Rao, "Control of a humanoid robot by a noninvasive brain–computer interface in humans," Journal of neural engineering, vol. 5, p. 214, 2008.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2022-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明