參考文獻 |
Bentzinger, C. F., Y. X. Wang, and M. A. Rudnicki. 2012. ′Building muscle: molecular regulation of myogenesis′, Cold Spring Harb Perspect Biol, 4.
Brunetti, A., and I. D. Goldfine. 1990. ′Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor′, J Biol Chem, 265: 5960-3.
Burdsal, C. A., M. L. Flannery, and R. A. Pedersen. 1998. ′FGF-2 alters the fate of mouse epiblast from ectoderm to mesoderm in vitro′, Dev Biol, 198: 231-44.
Chen, J. C., R. Ramachandran, and D. J. Goldhamer. 2002. ′Essential and redundant functions of the MyoD distal regulatory region revealed by targeted mutagenesis′, Dev Biol, 245: 213-23.
Cohen, S., J. A. Nathan, and A. L. Goldberg. 2015. ′Muscle wasting in disease: molecular mechanisms and promising therapies′, Nat Rev Drug Discov, 14: 58-74.
Cossu, G., S. Tajbakhsh, and M. Buckingham. 1996. ′How is myogenesis initiated in the embryo?′, Trends Genet, 12: 218-23.
Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. ′Expression of a single transfected cDNA converts fibroblasts to myoblasts′, Cell, 51: 987-1000.
de Morrée, A., C. T. J. van Velthoven, Q. Gan, J. S. Salvi, J. D. D. Klein, I. Akimenko, M. Quarta, S. Biressi, and T. A. Rando. 2017. ′Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence′, Proc Natl Acad Sci U S A, 114: E8996-e9005.
Fearon, K., J. Arends, and V. Baracos. 2013. ′Understanding the mechanisms and treatment options in cancer cachexia′, Nat Rev Clin Oncol, 10: 90-9.
Fearon, K. C., D. J. Glass, and D. C. Guttridge. 2012. ′Cancer cachexia: mediators, signaling, and metabolic pathways′, Cell Metab, 16: 153-66.
Fearon, K., F. Strasser, S. D. Anker, I. Bosaeus, E. Bruera, R. L. Fainsinger, A. Jatoi, C. Loprinzi, N. MacDonald, G. Mantovani, M. Davis, M. Muscaritoli, F. Ottery, L. Radbruch, P. Ravasco, D. Walsh, A. Wilcock, S. Kaasa, and V. E. Baracos. 2011. ′Definition and classification of cancer cachexia: an international consensus′, Lancet Oncol, 12: 489-95.
Gossen, M., and H. Bujard. 1992. ′Tight control of gene expression in mammalian cells by tetracycline-responsive promoters′, Proc Natl Acad Sci U S A, 89: 5547-51.
Goto, T., R. Ueha, T. Sato, Y. Fujimaki, T. Nito, and T. Yamasoba. 2020. ′Single, high-dose local injection of bFGF improves thyroarytenoid muscle atrophy after paralysis′, Laryngoscope, 130: 159-65.
Hasty, P., A. Bradley, J. H. Morris, D. G. Edmondson, J. M. Venuti, E. N. Olson, and W. H. Klein. 1993. ′Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene′, Nature, 364: 501-6.
Heraud-Farlow, J. E., and M. A. Kiebler. 2014. ′The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity′, Trends Neurosci, 37: 470-9.
Hernández-Hernández, J. M., E. G. García-González, C. E. Brun, and M. A. Rudnicki. 2017. ′The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration′, Semin Cell Dev Biol, 72: 10-18.
Hsiao, S. P., K. M. Huang, H. Y. Chang, and S. L. Chen. 2009. ′P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation′, Biochem J, 422: 343-52.
Huang, T. J., I. M. Adcock, and K. F. Chung. 2001. ′A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat′, Br J Pharmacol, 134: 1029-36.
Hubaud, A., and O. Pourquié. 2014. ′Signalling dynamics in vertebrate segmentation′, Nat Rev Mol Cell Biol, 15: 709-21.
Jaakkola, P., A. Määttä, and M. Jalkanen. 1998. ′The activation and composition of FiRE (an FGF-inducible response element) differ in a cell type- and growth factor-specific manner′, Oncogene, 17: 1279-86.
Jin, W., J. Peng, and S. Jiang. 2016. ′The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification′, Biochem Biophys Rep, 6: 209-19.
Kassar-Duchossoy, L., B. Gayraud-Morel, D. Gomès, D. Rocancourt, M. Buckingham, V. Shinin, and S. Tajbakhsh. 2004. ′Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice′, Nature, 431: 466-71.
Lakshmipriya, T., S. C. Gopinath, and T. H. Tang. 2016. ′Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay′, PLoS One, 11: e0151153.
Lefaucheur, J. P., and A. Sebille. 1995. ′Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy′, Neurosci Lett, 202: 121-4.
Maroto, M., R. A. Bone, and J. K. Dale. 2012. ′Somitogenesis′, Development, 139: 2453-56.
McKinsey, T. A., C. L. Zhang, and E. N. Olson. 2001. ′Control of muscle development by dueling HATs and HDACs′, Curr Opin Genet Dev, 11: 497-504.
Nabeshima, Y., K. Hanaoka, M. Hayasaka, E. Esumi, S. Li, I. Nonaka, and Y. Nabeshima. 1993. ′Myogenin gene disruption results in perinatal lethality because of severe muscle defect′, Nature, 364: 532-5.
Pan, Y. C., X. W. Wang, H. F. Teng, Y. J. Wu, H. C. Chang, and S. L. Chen. 2015. ′Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer′, Biosci Rep, 35.
Relaix, F., D. Rocancourt, A. Mansouri, and M. Buckingham. 2005. ′A Pax3/Pax7-dependent population of skeletal muscle progenitor cells′, Nature, 435: 948-53.
Ricci, E. P., A. Kucukural, C. Cenik, B. C. Mercier, G. Singh, E. E. Heyer, A. Ashar-Patel, L. Peng, and M. J. Moore. 2014. ′Staufen1 senses overall transcript secondary structure to regulate translation′, Nat Struct Mol Biol, 21: 26-35.
Rudnicki, M. A., T. Braun, S. Hinuma, and R. Jaenisch. 1992. ′Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development′, Cell, 71: 383-90.
Rudnicki, M. A., P. N. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold, and R. Jaenisch. 1993. ′MyoD or Myf-5 is required for the formation of skeletal muscle′, Cell, 75: 1351-9.
Schmidt, S. F., M. Rohm, S. Herzig, and M. Berriel Diaz. 2018. ′Cancer Cachexia: More Than Skeletal Muscle Wasting′, Trends Cancer, 4: 849-60.
Steringer, J. P., H. M. Müller, and W. Nickel. 2015. ′Unconventional secretion of fibroblast growth factor 2--a novel type of protein translocation across membranes?′, J Mol Biol, 427: 1202-10.
Talbert, E. E., and D. C. Guttridge. 2016. ′Impaired regeneration: A role for the muscle microenvironment in cancer cachexia′, Semin Cell Dev Biol, 54: 82-91.
Tortorella, L. L., D. J. Milasincic, and P. F. Pilch. 2001. ′Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway′, J Biol Chem, 276: 13709-17.
Wardle, F. C. 2019. ′Master control: transcriptional regulation of mammalian Myod′, J Muscle Res Cell Motil, 40: 211-26.
Wigg, Carol, and Elizabeth C. Pierson (ed.)^(eds.). 2010. Developmental Biology (Andrew D. Sinauer).
Yusuf, F., and B. Brand-Saberi. 2006. ′The eventful somite: patterning, fate determination and cell division in the somite′, Anat Embryol (Berl), 211 Suppl 1: 21-30.
Zhang, W., R. R. Behringer, and E. N. Olson. 1995. ′Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies′, Genes Dev, 9: 1388-99.
Zhang, X., X. Kang, L. Jin, J. Bai, W. Liu, and Z. Wang. 2018. ′Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF)′, Int J Nanomedicine, 13: 3897-906.
Zhu, Z., and J. B. Miller. 1997. ′MRF4 can substitute for myogenin during early stages of myogenesis′, Dev Dyn, 209: 233-41 |