博碩士論文 105881601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.117.98.178
姓名 歐書亞(Aushia Tanzih Al Haq)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 靶向氧化前驅物MnSOD抑制致癌基因威脅之下三陰性乳腺癌進展 與M2 巨噬細胞功能
(Targeting prooxidant MnSOD effect inhibits triple-negative breast cancer (TNBC) progression and M2 macrophage functions under the oncogenic stress)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三陰性乳腺癌(TNBC) 極度依賴於氧化磷酸化 (OXPHOS) 與粒線體活性氧 (mROS) ,促使癌細胞增殖、存活和新陳代謝。超錳氧化物歧化酶MnSOD (SOD2) 是粒線體內抗氧化保護分子,其功能異常牽涉各種人類惡性腫瘤發生。然而,MnSOD 影響 TNBC 微環境中免疫抑制性巨噬細胞功能的機制卻從未被闡明。我目前的研究調查人類乳腺癌cDNA 陣列與正常情況乳腺檢體進行比較和進一步分析癌症基因數據資料庫中 MnSOD 的表達及病人預後效果之關聯性。利用癌症幹細胞與巨噬細胞共同培養來評估 TNBC 細胞中 MnSOD大量表現與損失功能的生物效應,並且對腫瘤增生以及巨噬細胞浸潤在原位異種移植模型中之影響。結果顯示:高表達MnSOD 主要存在於侵襲性乳腺癌中,例如 HER2(+)以及 TNBC亞型。在分子機轉研究上,我發現轉錄因子 T細胞惡性腫瘤基因-1(MCT-1 或 MCTS1)誘導轉錄因子Nrf2蛋白的穩定性來驅動 MnSOD 高表達。MnSOD/MCT-1高表達和Nrf2/MCT-1高表達,在屬於TNBC的乳腺癌亞型basal-like中,與其臨床有不良結果具有高度相關性。在致癌作用下,TNBC 細胞中MnSOD 具有過氧化酶的氧化前驅物,增加 mROS的層次並適應TNBC 本身的氧化壓力。更重要的是,缺乏MnSOD的 TNBC 細胞會阻止 M2 巨噬細胞的極化和趨化性,但會提高 M1 巨噬細胞吞噬癌細胞的能力。基因表現分析顯示,當 MCT-1 減少時,interleukin-6 (IL-6) 訊號通路會顯著減弱。進一步分析證實,IL-6促進MCT-1 作用並增加 Nrf2/MnSOD 表現和 mROS 的產生。因此標靶MnSOD能夠降低MCT-1所促進的 TNBC 細胞侵襲性、乳腺癌幹細胞 (BCSCs) 特質、mROS 產出和 IL-6 分泌。運用非金屬抗氧化劑MnSOD模擬物 MitoQ 限制 mROS生成,有效抑制 MnSOD 與 MCT-1 所促進的 BCSCs 效應和 M2 巨噬細胞侵襲能力。MitoQ 也抑制 TNBC 的肺轉移潛能,並增加M1 巨噬細胞的浸潤現象。因此抑制MnSOD 活性會阻礙 TNBC 進展和改善微環境內抗腫瘤之巨噬細胞。總而言之,我的研究指出TNBC 治療的新穎策略,並且證明標靶致癌基因 MCT-1能抑制MnSOD作為促氧化劑及提升抗腫瘤免疫微環境。
摘要(英) Triple-negative breast cancer (TNBC) highly depends on oxidative phosphorylation (OXPHOS) and mitochondrial reactive oxygen species (mROS) for its proliferation, survival, and metabolism. MnSOD (SOD2) is a mitochondrial antioxidant defense (dismutase) that implicates in various human malignancies. However, the impact of altered MnSOD on immunosuppressive macrophage functions in TNBC microenvironment has never been elucidated. Current study investigated the expression and prognostic significance of MnSOD from Human Breast Cancer cDNA Array and other cancer profiling databases by comparing with normal breast biopsies. Biological effects were assessed upon MnSOD gain- and loss-of-function in TNBC cells followed by the evaluation of cancer stemness and Transwell coculture with macrophages. Tumor growth and metastasis as well as macrophage infusion were investigated in orthotopic xenograft model. Results showed that MnSODhigh is largely found in the aggressive subtypes of breast cancer such as HER2(+) subtype and TNBC. Mechanistically, MnSOD expression is induced by the stabilization of the transcription factor Nrf2 driven by activation of oncoprotein multiple copies in T-cell malignancy-1 (MCT-1 or MCTS1). Both MnSODhigh/MCT-1high and Nrf2high/MCT-1high signature pattern are associated with a poor clinical outcome in basal-like breast cancer subtype, a common surrogate feature of TNBC. MnSOD in TNBC cells has the propensity to act as a prooxidant peroxidase that escalates mROS levels, thereby accommodating TNBC per se to sustain oxidative stress under the oncogenic effect. More importantly, TNBC cells deficient in MnSOD restrain the polarity and chemotaxis of M2 macrophages but reinforces M1 macrophage capacity to phagocytose cancer cells. Gene expression profiling identified that interleukin-6 (IL-6) signaling pathway is significantly weakened when MCT-1 is depleted. Further analysis confirmed that IL-6 in the MCT-1 axis increases Nrf2/MnSOD and mROS production. Depletion of MnSOD consequently reduces TNBC invasiveness, breast cancer stem cells (BCSCs), mROS and IL-6 secretion exerted by MCT-1. Restricting mROS with MitoQ, a non-metal-based antioxidant MnSOD mimic, inhibits BCSCs and M2 macrophage infiltration promoted by MnSOD and MCT-1. MitoQ also curbs lung metastases potential of TNBC and enriches infiltration of M1 macrophages. Depleting MnSOD, therefore, hinders TNBC progression and intratumoral M2 macrophages. Collectively, this study highlights a novel therapeutic intervention for TNBC treatment in which targeting the oncogenic MCT-1-activated prooxidant MnSOD pathway halts the immunosuppressive tumor niche.
關鍵字(中) ★ MnSOD
★ MCT-1
★ IL-6
★ 與粒線體活性氧
★ MitoQ
★ 三陰性乳腺癌
★ 乳腺癌幹細胞
★ M1與M2巨噬細胞
★ 抗腫瘤免疫微環境
關鍵字(英) ★ MnSOD
★ MCT-1
★ IL-6
★ mROS
★ MitoQ
★ TNBC
★ breast cancer stem cells
★ M1 and M2 macrophages
★ tumor microenvironment
論文目次 Table of Contents
Table of Contents
Abstract vii
Acknowledgments viii
Table of Contents xi
List of Figures xiii
Explanation of Symbols and Abbreviations xiv
Chapter I. Introduction 1
1-1 Epidemiology of breast cancer and triple-negative breast cancer (TNBC) 1
1-2 MCT-1 and its oncogenic signaling in breast cancer 2
1-3 Mitochondrial ROS and MnSOD in carcinogenesis 4
1-4 Targeting IL-6 signaling axis in cancer 7
1-5 Monocytes and macrophages in the breast cancer microenvironment 8
1-7 Research objectives 10
Chapter II. Methods 11
2-1 Cell culture 11
2-2 Transfection and generation of stable cell lines 11
2-3 Microarray analysis 13
2-4 Western blotting analysis and antibodies (Abs) 13
2-5 Cycloheximide chase 14
2-6 Mammosphere formation 14
2-7 Flow cytometry of breast cancer stemness markers 14
2-8 Macrophage differentiation 15
2-9 Macrophage migration with single-cell tracking analysis 16
2-10 Macrophage polarity after coculture with breast cancer cells 16
2-11 Breast tumorigenesis assessment 17
2-12 Experimental metastasis assay 18
2-13 Measurement of IL-6 secretion and plasma IL-6 19
2-14 Immunohistochemistry analysis 20
2-15 Isolation and analysis of tumor-associated macrophages 21
2-16 Flow cytometry-based phagocytosis assay 22
2-17 Quantification of mROS 24
2-18 Quantification of H2O2 release and peroxidase activity 24
2-19 Quantification of MnSOD activity 25
2-20 Cancer cell and macrophage invasion 25
2-21 Cancer cell migration with wound healing assay 26
2-22 Gelatin zymography assay 26
2-23 Soft agar colony formation 27
2-24 Semi-quantitative RT-PCR (qRT-PCR) assays 27
2-27 Clinical study 28
2-28 Statistical analysis 28
Chapter III. Results 30
3-1 High MCT-1 and high MnSOD are prognosis markers for breast cancer 30
3-2 MCT-1 promotes MnSOD expression by extending Nrf2 half-life 32
3-3 MCT-1/MnSOD axis induces aggressive phenotypes in TNBC cells 36
3-4 MnSOD modulates M2 macrophages function 39
3-5 MCT-1 switches MnSOD into a prooxidant peroxidase and promotes IL-6/mROS signaling in TNBC cells 47
3-6 MitoQ blunts breast cancer stemness and M2 macrophage infiltration induced by oncogenic MCT-1/MnSOD signaling 56
3-7 MnSOD deficiency regresses TNBC tumor growth and limits infiltration of M2 macrophages in vivo promoted by MCT-1 61
3-8 Monotherapy of MitoQ is sufficient to impair MCT-1-driven cancer stemness and pulmonary metastases in TNBC mouse model 63
Chapter IV. Discussion 67
4-1 General discussion 67
4-2 Limitations and future works 72
Chapter V. Conclusion 74
Bibliography 75
Appendix A. 83
Appendix B. 87
參考文獻 1. Siegel RL, Miller KD, Fuchs HE, Jemal A: Cancer Statistics, 2021. CA Cancer J Clin 2021, 71:7-33.
2. Weigelt B, Reis-Filho JS: Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 2009, 6:718-730.
3. Gong Y, Liu YR, Ji P, Hu X, Shao ZM: Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep 2017, 7:45411.
4. Mao JH, Diest PJV, Perez-Losada J, Snijders AM: Revisiting the impact of age and molecular subtype on overall survival after radiotherapy in breast cancer patients. Sci Rep 2017, 7:12587.
5. Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, Diez M, Viladot M, Arance A, Munoz M: Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015, 24 Suppl 2:S26-35.
6. De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S, Lorusso V, De Placido S: Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev 2010, 36 Suppl 3:S80-86.
7. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001, 98:10869-10874.
8. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007, 13:4429-4434.
9. Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA: Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 2009, 115:423-428.
10. Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G: Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020, 6:54.
11. Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S, Zhou X, Cai S, Tu Y, McCoy A, Peoples M, et al: Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci Transl Med 2019, 11.
12. Schleich S, Strassburger K, Janiesch PC, Koledachkina T, Miller KK, Haneke K, Cheng YS, Kuechler K, Stoecklin G, Duncan KE, Teleman AA: DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature 2014, 512:208-212.
13. Schleich S, Acevedo JM, Clemm von Hohenberg K, Teleman AA: Identification of transcripts with short stuORFs as targets for DENR*MCTS1-dependent translation in human cells. Sci Rep 2017, 7:3722.
14. Bohlen J, Harbrecht L, Blanco S, Clemm von Hohenberg K, Fenzl K, Kramer G, Bukau B, Teleman AA: DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nat Commun 2020, 11:4676.
15. Lomakin IB, Dmitriev SE, Steitz TA: Crystal structure of the DENR-MCT-1 complex revealed zinc-binding site essential for heterodimer formation. Proc Natl Acad Sci U S A 2019, 116:528-533.
16. Hsu HL, Shi B, Gartenhaus RB: The MCT-1 oncogene product impairs cell cycle checkpoint control and transforms human mammary epithelial cells. Oncogene 2005, 24:4956-4964.
17. Levenson AS, Thurn KE, Simons LA, Veliceasa D, Jarrett J, Osipo C, Jordan VC, Volpert OV, Satcher RL, Jr., Gartenhaus RB: MCT-1 oncogene contributes to increased in vivo tumorigenicity of MCF7 cells by promotion of angiogenesis and inhibition of apoptosis. Cancer Res 2005, 65:10651-10656.
18. Shih HJ, Chu KL, Wu MH, Wu PH, Chang WW, Chu JS, Wang LH, Takeuchi H, Ouchi T, Hsu HL: The involvement of MCT-1 oncoprotein in inducing mitotic catastrophe and nuclear abnormalities. Cell Cycle 2012, 11:934-952.
19. Wu MH, Chen YA, Chen HH, Chang KW, Chang IS, Wang LH, Hsu HL: MCT-1 expression and PTEN deficiency synergistically promote neoplastic multinucleation through the Src/p190B signaling activation. Oncogene 2014, 33:5109-5120.
20. Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC, Hsu HL: MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 2019, 18:42.
21. Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC, Hsu HL: Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis 2017, 6:e313.
22. Zorov DB, Juhaszova M, Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014, 94:909-950.
23. Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol 2003, 552:335-344.
24. Murphy MP: How mitochondria produce reactive oxygen species. Biochem J 2009, 417:1-13.
25. Mailloux RJ, Harper ME: Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol Metab 2012, 23:451-458.
26. Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S: Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 2014, 77:139-151.
27. Wang Y, Branicky R, Noe A, Hekimi S: Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018, 217:1915-1928.
28. Hart PC, Ratti BA, Mao M, Ansenberger-Fricano K, Shajahan-Haq AN, Tyner AL, Minshall RD, Bonini MG: Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis. Oncotarget 2016, 7:308-322.
29. Velichkova M, Hasson T: Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol 2005, 25:4501-4513.
30. Menegon S, Columbano A, Giordano S: The Dual Roles of NRF2 in Cancer. Trends Mol Med 2016, 22:578-593.
31. Sporn MB, Liby KT: NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012, 12:564-571.
32. Tao S, Wang S, Moghaddam SJ, Ooi A, Chapman E, Wong PK, Zhang DD: Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res 2014, 74:7430-7441.
33. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, et al: Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 2013, 51:618-631.
34. Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, Hayes DN, Major MB: Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 2013, 73:2199-2210.
35. Kattan Z, Minig V, Leroy P, Dauca M, Becuwe P: Role of manganese superoxide dismutase on growth and invasive properties of human estrogen-independent breast cancer cells. Breast Cancer Res Treat 2008, 108:203-215.
36. Venkataraman S, Wagner BA, Jiang X, Wang HP, Schafer FQ, Ritchie JM, Patrick BC, Oberley LW, Buettner GR: Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic Res 2004, 38:1119-1132.
37. Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D, Batinic-Haberle I: Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta 2012, 1822:794-814.
38. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 2001, 276:4588-4596.
39. Murphy MP, Smith RA: Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007, 47:629-656.
40. Smith RA, Murphy MP: Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 2010, 1201:96-103.
41. Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS, Keller PW, Joseph J, Kalyanaraman B, Shacter E: The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 2010, 285:34447-34459.
42. Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, Dhup S, Tardy M, Vazeille T, Bouzin C, et al: A mitochondrial switch promotes tumor metastasis. Cell Rep 2014, 8:754-766.
43. Williamson J, Hughes CM, Cobley JN, Davison GW: The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol 2020, 36:101673.
44. Chang Q, Daly L, Bromberg J: The IL-6 feed-forward loop: a driver of tumorigenesis. Semin Immunol 2014, 26:48-53.
45. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003, 374:1-20.
46. Johnson DE, O′Keefe RA, Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018, 15:234-248.
47. Choy EH, De Benedetti F, Takeuchi T, Hashizume M, John MR, Kishimoto T: Translating IL-6 biology into effective treatments. Nat Rev Rheumatol 2020, 16:335-345.
48. Han Q, Guo M, Zheng Y, Zhang Y, De Y, Xu C, Zhang L, Sun R, Lv Y, Liang Y, et al: Current Evidence of Interleukin-6 Signaling Inhibitors in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Pharmacol 2020, 11:615972.
49. Kishimoto T: Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 2006, 8 Suppl 2:S2.
50. Scheinecker C, Smolen J, Yasothan U, Stoll J, Kirkpatrick P: Tocilizumab. Nat Rev Drug Discov 2009, 8:273-274.
51. Alraouji NN, Aboussekhra A: Tocilizumab inhibits IL-8 and the proangiogenic potential of triple negative breast cancer cells. Mol Carcinog 2021, 60:51-59.
52. Alraouji NN, Al-Mohanna FH, Ghebeh H, Arafah M, Almeer R, Al-Tweigeri T, Aboussekhra A: Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple-negative breast cancer. Mol Carcinog 2020, 59:1041-1051.
53. Jin K, Pandey NB, Popel AS: Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res 2018, 20:54.
54. Thyagarajan A, Sahu RP: Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr Cancer Ther 2018, 17:210-216.
55. Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer 2009, 9:239-252.
56. Balkwill FR, Capasso M, Hagemann T: The tumor microenvironment at a glance. J Cell Sci 2012, 125:5591-5596.
57. Shi C, Pamer EG: Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011, 11:762-774.
58. Alvey CM, Spinler KR, Irianto J, Pfeifer CR, Hayes B, Xia Y, Cho S, Dingal P, Hsu J, Smith L, et al: SIRPA-Inhibited, Marrow-Derived Macrophages Engorge, Accumulate, and Differentiate in Antibody-Targeted Regression of Solid Tumors. Curr Biol 2017, 27:2065-2077 e2066.
59. Argyle D, Kitamura T: Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Front Immunol 2018, 9:2629.
60. Nagarsheth N, Wicha MS, Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017, 17:559-572.
61. Wynn TA, Chawla A, Pollard JW: Macrophage biology in development, homeostasis and disease. Nature 2013, 496:445-455.
62. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z: Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019, 26:78.
63. Aras S, Zaidi MR: TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 2017, 117:1583-1591.
64. Jakubzick CV, Randolph GJ, Henson PM: Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 2017, 17:349-362.
65. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, et al: Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35:588-602 e510.
66. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A: The Metabolic Signature of Macrophage Responses. Front Immunol 2019, 10:1462.
67. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al: Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013, 496:238-242.
68. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, Liu G: Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 2015, 194:6082-6089.
69. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen HJ, Boshuizen MC, Ahmed M, et al: Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep 2016, 17:684-696.
70. Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 2013, 23:898-914.
71. Feng M, Chen JY, Weissman-Tsukamoto R, Volkmer JP, Ho PY, McKenna KM, Cheshier S, Zhang M, Guo N, Gip P, et al: Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci U S A 2015, 112:2145-2150.
72. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545:495-499.
73. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, Weissman IL: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019, 572:392-396.
74. Plebanek MP, Angeloni NL, Vinokour E, Li J, Henkin A, Martinez-Marin D, Filleur S, Bhowmick R, Henkin J, Miller SD, et al: Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun 2017, 8:1319.
75. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102:15545-15550.
76. Stewart DA, Yang Y, Makowski L, Troester MA: Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages. Mol Cancer Res 2012, 10:727-738.
77. Gorelik R, Gautreau A: Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc 2014, 9:1931-1943.
78. Benner B, Scarberry L, Suarez-Kelly LP, Duggan MC, Campbell AR, Smith E, Lapurga G, Jiang K, Butchar JP, Tridandapani S, et al: Generation of monocyte-derived tumor-associated macrophages using tumor-conditioned media provides a novel method to study tumor-associated macrophages in vitro. J Immunother Cancer 2019, 7:140.
79. Cassetta L, Noy R, Swierczak A, Sugano G, Smith H, Wiechmann L, Pollard JW: Isolation of Mouse and Human Tumor-Associated Macrophages. Adv Exp Med Biol 2016, 899:211-229.
80. Szatrowski TP, Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991, 51:794-798.
81. Mohanty JG, Jaffe JS, Schulman ES, Raible DG: A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 1997, 202:133-141.
82. Spitz DR, Oberley LW: Measurement of MnSOD and CuZnSOD activity in mammalian tissue homogenates. Curr Protoc Toxicol 2001, Chapter 7:Unit7 5.
83. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010, 123:725-731.
84. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6:1-6.
85. Al Haq AT, Tseng HY, Chen LM, Wang CC, Hsu HL: Targeting prooxidant MnSOD effect inhibits triple-negative breast cancer (TNBC) progression and M2 macrophage functions under the oncogenic stress. Cell Death Dis 2022, 13:49.
86. Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, Lin KY, Uen YH, Hou MF, Lin CM, et al: MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene 2014, 33:4496-4507.
87. Papadopoulos E, Jenni S, Kabha E, Takrouri KJ, Yi T, Salvi N, Luna RE, Gavathiotis E, Mahalingam P, Arthanari H, et al: Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G. Proc Natl Acad Sci U S A 2014, 111:E3187-3195.
88. Chomarat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000, 1:510-514.
89. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM, Hall BM: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009, 28:2940-2947.
90. Montano MA, da Cruz IB, Duarte MM, Krewer Cda C, da Rocha MI, Manica-Cattani MF, Soares FA, Rosa G, Maris AF, Battiston FG, et al: Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells. Cytokine 2012, 60:30-33.
91. Al Haq AT TH, Yang PP, Chen LM, Chen YA, Weng YS, Shen PC, Lai, YC, Hung WC, Wang LH, Hsu HL: Targeting the Positive-Feedback Nexuses of MCT-1/IL-6/CXCL7/PD-L1 Prevent Recurrence and Metastasis of Triple-negative Breast Cancer (TNBC) in the Xenograft Mice (manuscript in preparation). 2022.
92. Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A: Mitochondrial Complex I: structural and functional aspects. Biochim Biophys Acta 2006, 1757:1406-1420.
93. Ansenberger-Fricano K, Ganini D, Mao M, Chatterjee S, Dallas S, Mason RP, Stadler K, Santos JH, Bonini MG: The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 2013, 54:116-124.
94. Vidimar V, Gius D, Chakravarti D, Bulun SE, Wei JJ, Kim JJ: Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. Sci Adv 2016, 2:e1601132.
95. Ganini D, Santos JH, Bonini MG, Mason RP: Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice. Cell Chem Biol 2018, 25:413-425 e416.
96. James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, Murphy MP: Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 2007, 282:14708-14718.
97. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS: TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 2020, 48:W509-W514.
98. Li F, Wang H, Huang C, Lin J, Zhu G, Hu R, Feng H: Hydrogen peroxide contributes to the manganese superoxide dismutase promotion of migration and invasion in glioma cells. Free Radic Res 2011, 45:1154-1161.
99. Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK: Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res 2011, 71:6684-6695.
100. Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, Kajdacsy-Balla A, Diamond AM, Minshall RD, Consolaro ME, et al: MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun 2015, 6:6053.
101. He C, Danes JM, Hart PC, Zhu Y, Huang Y, de Abreu AL, O′Brien J, Mathison AJ, Tang B, Frasor JM, et al: SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proc Natl Acad Sci U S A 2019, 116:23534-23541.
102. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, et al: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475:106-109.
103. Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, Negri GL, von Karstedt S, Lockwood WW, Schaffer P, et al: Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A 2019, 116:9433-9442.
104. Zhu Y, Zou X, Dean AE, Brien JO, Gao Y, Tran EL, Park SH, Liu G, Kieffer MB, Jiang H, et al: Lysine 68 acetylation directs MnSOD as a tetrameric detoxification complex versus a monomeric tumor promoter. Nat Commun 2019, 10:2399.
105. Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, et al: p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 2004, 64:2350-2356.
106. Thomas C, Mackey MM, Diaz AA, Cox DP: Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 2009, 14:102-108.
107. Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 2011, 12:534-541.
108. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et al: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010, 40:893-904.
109. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Jr., Hallewell RA, Tainer JA: The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 1992, 71:107-118.
110. Schieber M, Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol 2014, 24:R453-462.
111. Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M: ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 2017, 312:C749-C764.
112. Brown CO, Salem K, Wagner BA, Bera S, Singh N, Tiwari A, Choudhury A, Buettner GR, Goel A: Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase. Biochem J 2012, 444:515-527.
113. Wruck CJ, Streetz K, Pavic G, Gotz ME, Tohidnezhad M, Brandenburg LO, Varoga D, Eickelberg O, Herdegen T, Trautwein C, et al: Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter. J Biol Chem 2011, 286:4493-4499.
114. Formentini L, Santacatterina F, Nunez de Arenas C, Stamatakis K, Lopez-Martinez D, Logan A, Fresno M, Smits R, Murphy MP, Cuezva JM: Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Rep 2017, 19:1202-1213.
115. Griess B, Mir S, Datta K, Teoh-Fitzgerald M: Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med 2020, 147:48-60.
116. Erttmann SF, Gekara NO: Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nat Commun 2019, 10:3493.
117. Hara-Chikuma M, Tanaka M, Verkman AS, Yasui M: Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat Commun 2020, 11:5666.
118. Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P: The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ 2003, 10:889-898.
119. Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ: Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020, 10:476.
120. Vasudevan D, Neuman SD, Yang A, Lough L, Brown B, Bashirullah A, Cardozo T, Ryoo HD: Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat Commun 2020, 11:4677.
121. Vecchi C, Montosi G, Zhang K, Lamberti I, Duncan SA, Kaufman RJ, Pietrangelo A: ER stress controls iron metabolism through induction of hepcidin. Science 2009, 325:877-880.
122. van Rooijen N, Hendrikx E: Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 2010, 605:189-203.
123. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006, 95:272-281.
124. Nagy A, Lanczky A, Menyhart O, Gyorffy B: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 2018, 8:9227.
指導教授 徐欣伶 王健家(Hsin-Ling Hsu Chien-Chia Wang) 審核日期 2022-3-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明