博碩士論文 108827610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.189.171.171
姓名 范舒媛(Pham Nu Thu Uyen)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 吲哚菁綠與PD-L1抑製劑共載全氟化碳雙納米乳用於結直腸癌光免疫治療的研製
(Development of Indocyanine Green and PD-L1 Inhibitor Co-Loaded Perfluorocarbon Double Nanoemulsions for Photoimmunotherapy of Colorectal Cancer)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-19以後開放)
摘要(中) 根據世界衛生組織 2020 年的統計報告,估計有超過 190 萬新病例和超過 900,000 例死亡病例,使結直腸癌 (CRC) 成為全球最常見的癌症之一。目前,放療和化療作為輔助治療,手術切除腫瘤組織是CRC患者的主要治療方法。儘管如此,該治療不會導致完全去除癌細胞,並且假設那些剩餘的癌細胞將從正常的身體免疫監視中去除。然而,癌細胞有不同的方式逃離人體免疫系統。近年來,免疫檢查點阻斷 (ICB) 療法已成為一種潛在的癌症治療選擇。由於癌細胞(包括 CRC 細胞)過表達 PD-L1,程序性死亡蛋白 1 和程序性死亡配體 1 (PD-1/PD-L1) 作為最重要的免疫檢查點配對之一已被深入研究。光療已獲得越來越多的認可,並被認為是一種前景光明的策略。不僅可以去除原發性腫瘤並最大限度地減少正常組織的損傷,而且光療還可以通過產生腫瘤相關劑來增加免疫原性。從這些知識來看,ICB 和光療的結合已成為一種前瞻性的治療方法,可提供強大的抗腫瘤免疫反應。本研究製備了抗 PD-L1 抗體 (PD-L1)-吲哚菁綠 (ICG)-共載全氟化碳 (PFC) 雙納米乳 (PIPDNEs) ,可為光療和免疫療法的結合提供CRC。 PIPDNES 不僅可以特異性阻斷 PD-1/PD-L1 級聯反應,還可以通過用近紅外 (NIR) 激光照射 ICG 來進行光療。通過TEM圖像,PIPDNEs首先被鑑定為球形雙層納米顆粒。使用 DLS 和 PALS,PIPDNE 具有負表面電荷 (-18.27  0.72 mV) ,尺寸為 241.90  3.04 nm。儘管與自由溶解的 ICG 相比,PIPDNEs 可以產生相對的熱療效果,但 PIPDNEs 可以在 NIR 照射下提供高單線態氧產生,從而對癌細胞產生相對較高的細胞毒性。此外,PIPDNEs 被證明可以在體外阻斷 CRC 細胞的 PD-L1 表達。因此,PIPDNEs 為提供光療和抗 PD-L1 功效帶來了潛在的希望。
摘要(英) Based on the statistics report 2020 of the World Health Organization, over 1.9 million new cases and more than 900,000 death cases were estimated giving colorectal cancer (CRC) became one of the most common cancers globally. Currently, radiotherapy and chemotherapy work as adjuvants followed by surgery to eliminate the tumor tissues is the major treatment for CRC patients. Nonetheless, the treatment does not result in complete removal of cancer cells and those remaining cancer cells is assumed that they will be removed from the normal body immunosurveillance. Yet, cancer cells have different ways to run away from the human immune system. Immune checkpoint blockade (ICB) therapy has come up as a potential cancer treatment option in recent years. Programmed death protein 1 and programmed death-ligand 1 (PD-1/PD-L1) have been intensively investigated as one of the most essential immunological check-point pairings since cancer cells overexpress PD-L1, including CRC cells. Besides that, phototherapy also has been gained increasing acceptance and considered a bright prospects strategy. Not only does removing the primary tumor with minimizing the normal tissues damage, but phototherapy can also increase the immunogenicity by producing tumor-associated agents. From that knowledge, the combination of ICB and phototherapy has become a prospective treatment to offer a strong antitumor immune response. In this study, anti-PD-L1 antibody (PD-L1) - indocyanine green (ICG) - co - loaded perfluorocarbon (PFC) double nanoemulsions (PIPDNEs), were fabricated, which may offer the combination of photo- and immunotherapy for CRC. PIPDNES can not only specifically block the PD-1/PD-L1 cascade but also perform phototherapy by irradiating ICG with near infrared (NIR) laser. Through TEM image, PIPDNEs were first identified as spherical double layers nanoparticles. Using DLS and PALS, PIPDNEs have negative surface charge (-18.27  0.72 mV) and size of 241.90  3.04 nm. Even though PIPDNEs could give a relative hyperthermia effect when compared with freely dissolved ICG, PIPDNEs could provide high singlet oxygen production under NIR illumination, giving a comparatively high cytotoxicity for cancer cells. Moreover, PIPDNEs were demonstrated to block PD-L1 expression of CRC cells in vitro. Thus, PIPDNEs bring potentially promising for providing both phototherapy and anti PD-L1 efficacy.
關鍵字(中) ★ 大肠癌
★ 光免疫療法
★ 吲哚菁綠
★ 抗 PD-L1 抗體
★ 全氟化碳
★ 雙倍納米乳液
關鍵字(英) ★ Colorectal cancer
★ photoimmunotherapy
★ indocyanine green
★ anti PD-L1 antibody
★ perfluorocarbon
★ doubles nanoemulsions
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT vi
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv
CHAPTER 1. INTRODUCTION 1
1.1. Global burden of colorectal cancer 1
1.2. CRC treatment therapy 3
1.2.1. Surgery 3
1.2.2. Chemotherapy 4
1.2.3. Radiotherapy 5
1.3. Immunotherapy 5
1.3.1. Cancer immunity 6
1.3.2. Mechanisms tumors use to evade host immunity 7
1.3.3. Immune Checkpoint Blockade (ICB) therapy 8
1.3.3.1. Cytotoxic T lymphocyte antigen-4 (CTLA­4) 9
1.3.3.2. Programmed cell death 1 (PD­1)/ Programmed cell death ligand 1 (PD­L1) 10
1.4. Phototherapy 12
1.4.1.1. Photothermal therapy 13
1.4.1.2. Photodynamic therapy 14
1.5. Phototherapy induces antitumor immunity 17
1.6. Anti PD-L1 antibody 18
1.7. Near infrared (NIR) light 20
1.8. Indocyanine green (ICG) 22
1.9. Perfluorooctylbromide (PFOB) 22
1.10. Nanomedicine 23
CHAPTER 2. RESEARCH OBJECTIVE 26
CHAPTER 3. MATERIALS AND METHODS 28
3.1. Materials 28
3.1.1. Chemicals 28
3.1.2. Equipment 29
3.2. Methods 30
3.2.1. Fabrications of various type of nanoparticles 30
3.2.1.1. Synthesis of anti-PD-L1 antibody (PD-L1) - indocyanine green (ICG) - co - loaded perfluorocarbon (PFC) double nanoemulsion (PIPNDEs) 30
3.2.1.2. Synthesis of Immunoglobulin G - indocyanine green (ICG) - co - loaded perfluorocarbon (PFC) double nanoemulsion ( IIPNDEs) 31
3.2.1.3. Calcein AM - indocyanine green (ICG) - co - loaded perfluorocarbon (PFC) double nanoemulsion (CIPDNEs) 32
3.2.1.4. Indocyanine green (ICG) - loaded perfluorocarbon (PFC) double nanoemulsion (IPDNEs) 32
3.2.2. Evaluation of encapsulation rate and loading rate 32
3.2.3. Determination nanoparticles size and zeta potential 33
3.2.4. Measurements of release kinetics of entrapped PD-L1 34
3.2.5. Measurements of release kinetics of entrapped IgG under NIR irradiation 34
3.2.6. Evaluate triggered hyperthermia effect ability 35
3.2.7. Testing singlet oxygen production 35
3.2.8. Culturing CT26 cell line 36
3.2.9. Prediction of drug release to cell in vitro 36
3.2.10. Evaluation of photo-toxicity in vitro 37
3.2.10.1. Preparing cells and treatment groups 37
3.2.10.2. MTT assay 38
3.2.10.3. Calcein AM-PI staining 39
3.2.11. Evaluation of blocking ability of PD-L1 from PIPDNEs 40
3.2.12. Statistical analysis 42
CHAPTER 4. RESULTS AND DISCUSSION 43
4.1. Characterizations of PIPDNEs 43
4.1.1. Fabrication of PIPDNEs analysis 43
4.1.2. Size and zeta potential of PIPDNEs 46
4.1.3. Encapsulation rate and loading rate of PIPDNEs 47
4.2. Release kinetic of entrapped IgG 47
4.3. NIR trigger IgG release efficiency 49
4.4. Inducing hyperthermia effect of PIPDNEs 50
4.5. Singlet oxygen generation of PIPDNEs 53
4.6. Evaluation of cells being affected by drug released from nanoparticles 55
參考文獻 [1] A. M. E. Abdalla, L. Xiao, M. W. Ullah, M. Yu, C. X. Ouyang, and G. Yang, "Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics." Theranostics, vol. 8, pp. 533-+, 2018.
[2] Z. Abdullaeva, Nanomaterials in Medicine. In" Nanomaterials in Daily Life: Compounds, Synthesis, Processing and Commercialization", Springer International Publishing, pp. 67-89, 2017.
[3] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, "Photodynamic Therapy of Cancer: An Update." Ca-a Cancer Journal for Clinicians, vol. 61, pp. 250-281, 2011.
[4] T. V. Ajithkumar, 2 - Principles of surgical oncology. In T. V. Ajithkumar & H. M. Hatcher (Eds.)," Specialist Training in Oncology", Mosby, pp. 10-14, 2011.
[5] A. Akinleye, andZ. Rasool, "Immune checkpoint inhibitors of PD-L1 as cancer therapeutics." Journal of Hematology & Oncology, vol. 12, 2019.
[6] S. Almahmoud, andH. Z. A. Zhong, "Molecular Modeling Studies on the Binding Mode of the PD-1/PD-L1 Complex Inhibitors." International Journal of Molecular Sciences, vol. 20, 2019.
[7] R. C. Bast Jr, andJ. F. Holland. (2010). Holland-Frei Cancer Medicine 8. PMPH-USA.
[8] R. B. Bell, Z. Feng, C. B. Bifulco, R. Leidner, A. Weinberg, and B. A. Fox, 15 - Immunotherapy. In R. B. Bell, R. P. Fernandes, & P. E. Andersen (Eds.)," Oral, Head and Neck Oncology and Reconstructive Surgery", Elsevier, pp. 314-340, 2018.
[9] E. Buchbinder, andF. S. Hodi, "Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade." Journal of Clinical Investigation, vol. 125, pp. 3377-3383, 2015.
[10] A. Caley, andR. Jones, "The principles of cancer treatment by chemotherapy." Surgery (Oxford), vol. 30, pp. 186-190, 2012.
[11] A. P. Castano, T. N. Demidova, and M. R. Hamblin, "Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization." Photodiagnosis and Photodynamic Therapy, vol. 1, pp. 279-293, 2004.
[12] Cellstain-Double Staining Kit. https://www.dojindo.eu.com/store/p/190-Cellstain-Double-Staining-Kit.aspx
[13] T. A. M. Center. Rectal Cancer Surgery. https://tamc.co.il/article/rectal-cancer-surgery
[14] S. Clement, W. J. Chen, W. Deng, and E. M. Goldys, "X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs." International Journal of Nanomedicine, vol. 13, pp. 3553-3570, 2018.
[15] S. D’Souza, "A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms." Advances in Pharmaceutics, vol. 2014, pp. 304757, 2014.
[16] F. Danhier, N. Lecouturier, B. Vroman, C. Jerome, J. Marchand-Brynaert, O. Feron, and V. Preat, "Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation." Journal of Controlled Release, vol. 133, pp. 11-17, 2009.
[17] G. Della Pelle, A. D. Lopez, M. S. Fiol, and N. Kostevsek, "Cyanine Dyes for Photo-Thermal Therapy: A Comparison of Synthetic Liposomes and Natural Erythrocyte-Based Carriers." International Journal of Molecular Sciences, vol. 22, 2021.
[18] O. Demaria, S. Cornen, M. Daeron, Y. Morel, R. Medzhitov, and E. Vivier, "Harnessing innate immunity in cancer therapy." Nature, vol. 574, pp. 45-56, 2019.
[19] A. Desnoyer, S. Broutin, J. Delahousse, C. Maritaz, L. Blondel, O. Mir, N. Chaput, and A. Paci, "Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 2, immune checkpoint inhibitor antibodies." European Journal of Cancer, vol. 128, pp. 119-128, 2020.
[20] L. Di, andE. H. Kerns, Chapter 27 - Transporter Methods. In L. Di & E. H. Kerns (Eds.)," Drug-Like Properties (Second Edition)", Academic Press, pp. 339-350, 2016.
[21] V. A. Dmitrieva, E. V. Tyutereva, and O. V. Voitsekhovskaja, "Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles." International Journal of Molecular Sciences, vol. 21, 2020.
[22] D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, "Photodynamic therapy for cancer." Nature Reviews Cancer, vol. 3, pp. 380-387, 2003.
[23] S. Farkona, E. P. Diamandis, and I. M. Blasutig, "Cancer immunotherapy: the beginning of the end of cancer?." Bmc Medicine, vol. 14, 2016.
[24] P. Favoriti, G. Carbone, M. Greco, F. Pirozzi, R. E. M. Pirozzi, and F. Corcione, "Worldwide burden of colorectal cancer: a review." Updates in Surgery, vol. 68, pp. 7-11, 2016.
[25] B. M. S. Ferreira, J. B. V. S. Ramalho, and E. F. Lucas, "Demulsification of Water-in-Crude Oil Emulsions by Microwave Radiation: Effect of Aging, Demulsifier Addition, and Selective Heating." Energy & Fuels, vol. 27, pp. 615-621, 2013.
[26] J. A. Floyd, A. Galperin, and B. D. Ratner, "Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy." Journal of Biomedical Materials Research Part A, vol. 104, pp. 544-552, 2016.
[27] E. A. Genina, A. N. Bashkatov, G. V. Simonenko, O. D. Odoevskaya, V. V. Tuchin, and G. B. Altshuler, "Low-intensity indocyanine-green laser phototherapy of acne vulgaris: Pilot study." Journal of Biomedical Optics, vol. 9, pp. 828-834, 2004.
[28] J. Gong, A. Chehrazi-Raffle, S. Reddi, and R. Salgia, "Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations." Journal for ImmunoTherapy of Cancer, vol. 6, 2018.
[29] I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, "Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells." Langmuir, vol. 27, pp. 15024-15033, 2011.
[30] F. Guo, M. Yu, J. P. Wang, F. P. Tan, and N. Li, "Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes." ACS Applied Materials & Interfaces, vol. 7, pp. 20556-20567, 2015.
[31] L. Gutiérrez, G. Stepien, L. Gutiérrez, M. Pérez-Hernández, J. Pardo, J. Pardo, V. Grazú, and J. M. de la Fuente, 1.09 - Nanotechnology in Drug Discovery and Development. In S. Chackalamannil, D. Rotella, & S. E. Ward (Eds.)," Comprehensive Medicinal Chemistry III", Elsevier, pp. 264-295, 2017.
[32] M. F. Hafner, andJ. Debus, "Radiotherapy for Colorectal Cancer: Current Standards and Future Perspectives." Visceral Medicine, vol. 32, pp. 172-177, 2016.
[33] F. A. Haggar, andR. P. Boushey, "Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors." Clin Colon Rectal Surg, vol. 22, pp. 191-197, 2009.
[34] A. Hak, V. R. Shinde, and A. K. Rengan, "A review of advanced nanoformulations in phototherapy for cancer therapeutics." Photodiagnosis and Photodynamic Therapy, vol. 33, 2021.
[35] H. S. Han, andK. Y. Choi, "Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications." Biomedicines, vol. 9, 2021.
[36] Z. G. Han, X. S. Tu, L. N. Qiao, Y. G. Sun, Z. B. Li, X. L. Sun, and Z. H. Wu, "Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials." Journal of Materials Chemistry B, vol. 9, pp. 6751-6769, 2021.
[37] K. M. Hargadon, C. E. Johnson, and C. J. Williams, "Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors." International Immunopharmacology, vol. 62, pp. 29-39, 2018.
[38] T. A. Henderson, andL. D. Morries, "Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?." Neuropsychiatric Disease and Treatment, vol. 11, pp. 2191-2208, 2015.
[39] J. Hou, Chapter 6 - Electron microscopy for tight junction. In J. Hou (Ed.)," A Laboratory Guide to the Tight Junction", Academic Press, pp. 213-261, 2020.
[40] T. Y. Hulchanskyy, I. Roy, L. N. Goswami, Y. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer." Nano Letters, vol. 7, pp. 2835-2842, 2007.
[41] K. K. Jain, "Nanomedicine: Application of nanobiotechnology in medical practice." Medical Principles and Practice, vol. 17, pp. 89-101, 2008.
[42] D. Jaque, L. M. Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. M. Rodriguez, and J. G. Sole, "Nanoparticles for photothermal therapies." Nanoscale, vol. 6, pp. 9494-9530, 2014.
[43] B. P. Jiang, B. Zhou, Z. X. Lin, H. Liang, and X. C. Shen, "Recent Advances in Carbon Nanomaterials for Cancer Phototherapy." Chemistry-a European Journal, vol. 25, pp. 3993-4004, 2019.
[44] Z. Jiang, T. Li, H. Cheng, F. Zhang, X. Yang, S. Wang, J. Zhou, and Y. Ding, "Nanomedicine potentiates mild photothermal therapy for tumor ablation." Asian Journal of Pharmaceutical Sciences, vol. 16, pp. 738-761, 2021.
[45] D. Kalyane, N. Raval, R. Maheshwari, V. Tambe, K. Kalia, and R. K. Tekade, "Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer." Materials Science & Engineering C-Materials for Biological Applications, vol. 98, pp. 1252-1276, 2019.
[46] M. Kempf, B. Mandal, S. Jilek, L. Thiele, J. Voros, M. Textor, H. P. Merkle, and E. Walter, "Improved stimulation of human dendritic cells by receptor engagement with surface-modified microparticles." Journal of Drug Targeting, vol. 11, pp. 11-18, 2003.
[47] N. Keum, andE. Giovannucci, "Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies." Nature Reviews Gastroenterology & Hepatology, vol. 16, pp. 713-732, 2019.
[48] T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, "A Comprehensive Tutorial on In Vitro Characterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms." Biomed Research International, vol. 2013, 2013.
[49] L. Lee, M. Gupta, and S. Sahasranaman, "Immune Checkpoint Inhibitors: An Introduction to the Next-Generation Cancer Immunotherapy." Journal of Clinical Pharmacology, vol. 56, 2016.
[50] Y. H. Lee, andY. T. Ma, "Synthesis, characterization, and biological verification of anti-HER2 indocyanine green-doxorubicin-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions for targeted photochemotherapy of breast cancer cells." Journal of Nanobiotechnology, vol. 15, 2017.
[51] X. Li, Z. G. Sui, X. Li, W. Xu, Q. Guo, J. L. Sun, and F. B. Jing, "Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery." International Journal of Nanomedicine, vol. 13, pp. 3053-3067, 2018.
[52] H. H. Liu, P. J. H. Carter, A. C. Laan, R. Eelkema, and A. G. Denkova, "Singlet Oxygen Sensor Green is not a Suitable Probe for O-1(2) in the Presence of Ionizing Radiation." Scientific Reports, vol. 9, 2019.
[53] Y. Liu, G. Z. Yang, S. Jin, L. T. Xu, and C. X. Zhao, "Development of High-Drug-Loading Nanoparticles." Chempluschem, vol. 85, pp. 2143-2157, 2020.
[54] S. Long, Y. Y. Xu, F. F. Zhou, B. Wang, Y. N. Yang, Y. Fu, N. Du, and X. S. Li, "Characteristics of temperature changes in photothermal therapy induced by combined application of indocyanine green and laser." Oncology Letters, vol. 17, pp. 3952-3959, 2019.
[55] Y. X. Ma, X. H. Liu, Q. L. Ma, and Y. Z. Liu, "Near-infrared nanoparticles based on indocyanine green-conjugated albumin: a versatile platform for imaging-guided synergistic tumor chemo-phototherapy with temperature-responsive drug releas." Oncotargets and Therapy, vol. 11, pp. 8517-8528, 2018.
[56] D. S. Malewadkar, "Colorectal Cancer Surgery."
[57] M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, "Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update." Open surgical oncology journal (Online), vol. 2, pp. 12-25, 2010.
[58] A. L. Martin, C. M. Homenick, Y. Xiang, E. Gillies, and N. Matsuura, "Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells." Langmuir, vol. 35, pp. 4603-4612, 2019.
[59] L. Mei, Y. Q. Zhang, Y. Zheng, G. Tian, C. X. Song, D. Y. Yang, H. L. Chen, H. F. Sun, Y. Tian, K. X. Liu, Z. Li, and L. Q. Huang, "A Novel Docetaxel-Loaded Poly (epsilon-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment." Nanoscale Research Letters, vol. 4, pp. 1530-1539, 2009.
[60] S. Modi, andB. D. Anderson, "Determination of Drug Release Kinetics from Nanoparticles: Overcoming Pitfalls of the Dynamic Dialysis Method." Molecular Pharmaceutics, vol. 10, pp. 3076-3089, 2013.
[61] P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, "Cell death pathways in photodynamic therapy of cancer." Cancers (Basel), vol. 3, pp. 2516-2539, 2011.
[62] C. W. Ng, J. Li, and K. Pu, "Recent Progresses in Phototherapy-Synergized Cancer Immunotherapy." Advanced Functional Materials, vol. 28, pp. 1804688, 2018.
[63] F. Nienhaus, D. Colley, A. Jahn, S. Pfeiler, V. Flocke, S. Temme, M. Kelm, N. Gerdes, U. Flogel, and F. Bonner, "Phagocytosis of a PFOB-Nanoemulsion for F-19 Magnetic Resonance Imaging: First Results in Monocytes of Patients with Stable Coronary Artery Disease and ST-Elevation Myocardial Infarction." Molecules, vol. 24, 2019.
[64] P. Norat, S. Soldozy, M. Elsarrag, J. Sokolowski, K. Yagmurlu, M. S. Park, P. Tvrdik, and M. Y. S. Kalani, "Application of Indocyanine Green Videoangiography in Aneurysm Surgery: Evidence, Techniques, Practical Tips." Frontiers in Surgery, vol. 6, 2019.
[65] D. M. Pardoll, "The blockade of immune checkpoints in cancer immunotherapy." Nature Reviews Cancer, vol. 12, pp. 252-264, 2012.
[66] D. Predoi, R. V. Ghita, F. Ungureanu, C. C. Negrila, R. A. Vatasescu-Balcan, and M. Costache, "Characteristics of hydroxyapatite thin films." Journal of Optoelectronics and Advanced Materials, vol. 9, pp. 3827-3831, 2007.
[67] A. Ribas, andJ. D. Wolchok, "Cancer immunotherapy using checkpoint blockade." Science, vol. 359, pp. 1350-+, 2018.
[68] M. K. Ruhi, A. Ak, and M. Gulsoy, "Dose-dependent photochemical/photothermal toxicity of indocyanine green-based therapy on three different cancer cell lines." Photodiagnosis and Photodynamic Therapy, vol. 21, pp. 334-343, 2018.
[69] T. Sawicki, M. Ruszkowska, A. Danielewicz, E. Niedzwiedzka, T. Arlukowicz, and K. E. Przybylowicz, "A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis." Cancers, vol. 13, 2021.
[70] J. J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, "Cancer nanomedicine: progress, challenges and opportunities." Nature Reviews Cancer, vol. 17, pp. 20-37, 2017.
[71] E. Sorbellini, M. Rucco, and F. Rinaldi, "Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update." Lasers in Medical Science, vol. 33, pp. 1431-1439, 2018.
[72] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries." CA: A Cancer Journal for Clinicians, vol. 71, pp. 209-249, 2021.
[73] C. L. Ventola, "Cancer Immunotherapy, Part 1: Current Strategies and Agents." P T, vol. 42, pp. 375-383, 2017.
[74] A. D. Waldman, J. M. Fritz, and M. J. Lenardo, "A guide to cancer immunotherapy: from T cell basic science to clinical practice." Nature Reviews Immunology, vol. 20, pp. 651-668, 2020.
[75] Z. Q. Wan, P. Zhang, L. W. Lv, and Y. S. Zhou, "NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review." Theranostics, vol. 10, pp. 11837-11861, 2020.
[76] H. Wang, X. Li, B. W.-C. Tse, H. Yang, C. A. Thorling, Y. Liu, M. Touraud, J. B. Chouane, X. Liu, M. S. Roberts, and X. Liang, "Indocyanine green-incorporating nanoparticles for cancer theranostics." Theranostics, vol. 8, pp. 1227-1242, 2018.
[77] S. C. Wei, C. R. Duffy, and J. P. Allison, "Fundamental Mechanisms of Immune Checkpoint Blockade Therapy." Cancer Discovery, vol. 8, pp. 1069-1086, 2018.
[78] What Is Cancer? (2021). National Cancer Institute. https://www.cancer.gov/about-cancer/understanding/what-is-cancer
[79] Y. H. Xie, Y. X. Chen, and J. Y. Fang, "Comprehensive review of targeted therapy for colorectal cancer." Signal Transduction and Targeted Therapy, vol. 5, 2020.
[80] Z. J. Xie, T. J. Fan, J. An, W. Choi, Y. H. Duo, Y. Q. Ge, B. Zhang, G. H. Nie, N. Xie, T. T. Zheng, Y. Chen, H. Zhang, and J. S. Kim, "Emerging combination strategies with phototherapy in cancer nanomedicine." Chemical Society Reviews, vol. 49, pp. 8065-8087, 2020.
[81] F. Yan, H. Wu, H. Liu, Z. Deng, H. Liu, W. Duan, X. Liu, and H. Zheng, "Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles." Journal of controlled release : official journal of the Controlled Release Society, vol. 224, pp. 217-228, 2016.
[82] L. Yan, andL. Y. Qiu, "Indocyanine green targeted micelles with improved stability for near-infrared image-guided photothermal tumor therapy." Nanomedicine, vol. 10, pp. 361-373, 2015.
[83] C. Y. Zhang, L. Yan, X. Wang, S. Zhu, C. Y. Chen, Z. J. Gu, and Y. L. Zhao, "Progress, challenges, and future of nanomedicine." Nano Today, vol. 35, 2020.
[84] Z. P. Zhang, andS. S. Feng, "The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles." Biomaterials, vol. 27, pp. 4025-4033, 2006.
[85] F. F. Zhou, R. E. Nordquist, and W. R. Chen, "Photonics immunotherapy - A novel strategy for cancer treatment." Journal of Innovative Optical Health Sciences, vol. 9, 2016.
[86] Q. Zhu, S. Y. Xiao, Z. J. Hua, D. M. Yang, M. Hu, Y. T. Zhu, and H. Zhong, "Near Infrared (NIR) Light Therapy of Eye Diseases: A Review." International Journal of Medical Sciences, vol. 18, pp. 109-119, 2021.
[87] T. C. Zhu, andJ. C. Finlay, "The role of photodynamic therapy (PDT) physics." Medical Physics, vol. 35, pp. 3127-3136, 2008.
[88] X. J. Zhu, W. Feng, J. Chang, Y. W. Tan, J. C. Li, M. Chen, Y. Sun, and F. Y. Li, "Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature." Nature Communications, vol. 7, 2016.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2022-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明