博碩士論文 107226057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.147.7.47
姓名 藍聖荃(Sheng-Chiuan-Lan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 近紫外光結構照明顯微術應用於花瓣表面光學特性之研究
(Apply Near-ultraviolet Structured Illumination Microscopy to Studies of Surface Structures and Optical Characteristics of the Petals)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-9以後開放)
摘要(中) 視覺上,受日光照射的花瓣如何吸引昆蟲是一個研究人員想解開的難題,因此花瓣表面的光學特性成為研究的目標之一,現有的花瓣顯微系統無法取得花瓣的當下,觀察其表面的微結構,因此樣本需要使用化學藥劑複製表面結構或是保存摘取的花瓣於容器中,本研究設計一套保留花瓣原始樣貌的顯微系統,此系統使用近紫外光作為光源,在不破壞花瓣表面結構下,利用結構照明顯微術拍攝花辮表面的切片資訊,重建的影像可組成一組帶有螢光與散射光的三維結構影像。另外,為了確認近紫外光照射花瓣表面結構的表面散射訊號的分布,因此架設一個拍攝全觀花瓣的 UV 光影像作為微觀影像的對照組。本研究利用上述兩種系統對四種花瓣進行觀測,分別為大白菊、大花咸豐草、黑斑龍膽與向日葵,透過顯微系統可觀察黑斑龍膽與向日葵花瓣由內而外的細胞外觀有形變,另外兩種花瓣則沒有形變,量化四種微觀花瓣細胞的長寬比、週期與光強度,花瓣表面微結構的形變與全觀 UV 光的散射訊號分布不一定有正向關係;將微觀螢光、微觀散射光與全觀 UV 光強度互相比較,上述三種光強度沒有一致的相關性。
摘要(英) Visually, how petals irradiated by sunlight attract insects is a complex issue that researchers are curious about,accordingly, the optical properties of petals′ surfaces have become one of research topics. The existing petal microscopy system can′t obtain the current petals and observe the surface microstructure, so the sample needs to use chemicals to replicate the surface structure or preserve the extracted petals in a container. This study set up a microscopy which preserves the original appearance of the petals. This system uses near-ultraviolet light as the light source. Under the surface structure of the petals, structured illumination microscopy is used to capture the slice information of the surface of the flower braid. The reconstructed image can form a set of three-dimensional structure images with fluorescence and scattering. In addition, in order to confirm the distribution of surface scattering on the surface structure of petals irradiated by near-ultraviolet light, a UV light image of the petals was set up as a control group for microscopic images. In this study, the above two systems were used to observe four petals, namely, Chrysanthemum × morifolium, Bidens Pilosa var. radiata, Gentiana scabrida var. punctulata and Helianthus annuus. Through the microscope system, the cells of black spotted gentian and sunflower petals can be observed from the inside to the outside. The appearance is deformed, while the other two petals have no deformation. To quantify the aspect ratio, period, and light intensity of the four microscopic petal cells, the deformation of the petal surface microstructure may not have a positive relationship with the distribution of the overall UV light scattering signal; Comparing the intensity of microscopic fluorescence, microscopic scattered light, and full-view UV light with each other, there is no consistent correlation between the above three light intensities.
關鍵字(中) ★ 結構照明顯微術
★ 花瓣的表面結構
★ 花瓣的光學特性
關鍵字(英) ★ structured illumination microscopy
★ surface structures of the petals
★ optical characteristics of the petals
論文目次 摘要 i
Abstract i
致謝 i
目錄 ii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧與探討 1
1.2.1 電子式顯微系統 1
1.2.2 光學顯微系統 3
1.2.3花瓣表面光學特性 7
1.3 論文架構 10
第二章 實驗原理 11
2.1 花瓣組織成分 11
2.2 庫貝卡蒙克理論 12
2.3 結構照明顯微術 14
2.4 螢光 16
第三章 系統架構 18
3.1 nUVSIM系統 18
3.2 系統的空間解析度 20
3.2 花瓣螢光光譜系統 24
3.3 全觀的拍攝系統 25
3.4 花瓣簡介、採集過程與保存方式 26
3.4.1 黑斑龍膽 26
3.4.2 大花咸豐草 26
3.4.3 向日葵 27
3.4.4 大白菊 27
3.5 備製樣本流程 28
3.5.1 微結構樣本 28
3.5.2 全觀拍攝花瓣樣本 29
第四章 實驗結果 30
4.1 螢光與散射光的重建影像與螢光光譜 30
4.1.1 影像重建 30
4.1.2 散射光與螢光影像疊加 32
4.1.3 影像尺寸 34
4.1.4 螢光光譜 36
4.2 花瓣細胞長寬比 37
4.3 花瓣細胞頂端的主頻率 39
4.4 微觀與全觀花瓣影像強度對比 42
第五章 結論 46
參考文獻 47
參考文獻 1. Y. T. Cheng, D. E. Rodak, C. A. Wong and C. A. Hayden, “Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves,” Nanotechnology 7, 1359-1362 (2006).
2. M. Zhang, S. Feng, L. Wang, Y. Zheng, “Lotus effect in wetting and self-cleaning,” Biotribology 5, 31-43 (2016).
3. C. J. van der Kooi, J. T. M. Elzenga , J. Dijksterhuis and D. G. Stavenga, “Functional optics of glossy buttercup flowers,” Jour. of the Roy. Soc. 17, 20160933 (2017).
4. S. Vignolini, M. M. Thomas, M. Kolle, T. Wenzel, A. Rowland, P. J. Rudall, J. J. Baumberg, B. J. Glover, and U. Steiner, “Directional scattering from the glossy flower of Ranunculus: how the buttercup lights up your chin,” Jour. of the Roy. Soci. 9, 1295-1301 (2012).
5. M. Kolle, Photonic structure inspired by nature, (Springer 2011).
6. A. Schweikart, D. Zimin, U. A. Handge, M. Bennemann, V. Altst a¨dt, A. Fery, and K. Koch, “Fabrication of artificial petal sculptures by replication of sub-micron surface wrinkles,” Macromol. Chem. Phys. 211, 259–264 (2010).
7. D. Peitsch, A. Fietz, H. Hertel, J. de Souza, D. F. Ventura, and R. Menzel , “The spectral input systems of hymenopteran insects and their receptor -based colour vision,” J.Comp.Phys. A 170, 23-40 (1992).
8. R. Menzel, “Spectral sensitivity and color vision in invertebrates. In:Autrum H(ed) Comparative physiology and evolution of vision in invertebrates,” in Handbook of sensory physiology VII/6A, H. Autrum eds. (Springer, 1979), pp.503-580.
9. D. McMullan, “Scanning Electron Microscopy 1928–1965*,” The Jou. of Scann. Micro. 17, 175–185 (1995).
10. K. C. A. Smith and C. W. Oatley, “The scanning electron microscope and its fields of application,” Brit. Jour. of Appl. Phys. 6, 391–399 (1955).
11. A.K. Pathana, J. Bondb and R.E. Gaskina, “Sample preparation for SEM of plant surfaces,” Elec. Micros. Spec. Issue. 12, 32–43 (2009).
12. P. Wester and R. C.-Bockhoff, “Floral Diversity and Pollen Transfer Mechanisms in Bird-pollinated Salvia Species,” Anna. of Bota. 100, 401-421 (2007).
13. M. G. Doria, N. P.-Mora, and F. Gonza´lez, “Reassessing Inflorescence and Floral Morphology and Development in Hedyosmum,” Inte. Jour. of Plan. Scie. 173(7), 735–750 (2012).
14. E. Stabentheinerm, A. Zankel and P. Pölt, “Environmental scanning electron microscopy (ESEM)—a versatile tool in studying plants,” Proto. Sprin. 246, 89–99 (2010).
15. D. Dan, B. Yao and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291-1307 (2014).
16. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Letters 22, 1905–1905 (1997).
17. M. Saxena, G. Eluru and S. S. Gorthi, “Structured illumination microscopy,” Adva. in Opti and Phot. 7, 241–275 (2015).
18. J. B. Landis, K. L. Ventura, D. E. Soltis, P. S. Soltis, and D. G. Oppenheimer, “Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape,” Appl. in Plant Scie 4, 1400112 (2015).
19. W. B. Amos and J.G. White, “How the Confocal Laser Scanning Microscope entered Biological Research,” Biol. of the Cell. 95, 335–342 (2003).
20. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Hultlan Skin: Melanin Provides Strong Contrast,” Conf. Scan. Las. Micros. 6, 946–952 (1995).
21. W. Denk, J. H. Strickler and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Sceince 248 (4951), 73-76 (1990).
22. M. Yamagiwa, Gen Omura, Y. Ozeki, M. Ishii, H. M. Dang, S. Kajiyama, T. Suzuki, K. Fukui, and K. Itoh, “Dual-Band Stimulated Parametric Emission Microscopy,” Japa. of Jour. Appl. Phys. 49 016603 (2010).
23. F. K. Richtmyer, “The Reflection of Ultraviolet by Flowers.” J.O.S.A & R.S.I 7, 151-168 (1923).
24. A. J. Schulte, M. Mail, L. A. Hahn and W. Barthlott, “Ultraviolet patterns of flowers revealed in polymer replica – caused by surface architecture,” Beil. Jour. of Nano.
10, 459–466 (2019).
25. M. Gronquist, A. Bezzerides, A. Attygalle, J. Meinwald, M. Eisner, and T. Eisner, “Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum),” Proc. of the Nati. Acad. of Scie. of the Unit. Stat. of Amer. 98, 13745–13750 (2001).
26. C. J. v. d. Kooi, A. G. Dyer, P. G. Kevan and K. Lunau, “Functional significance of the optical properties of flowers for visual signalling,”Anna. of Bota. 123, 263–276 (2019).
27. P. Vukusic and J. R. Sambles, “Photonic structures in biology,”Nature 424, 852–855 (2003).
28. C. J. v. d. Kooi, B. D. Wilts, H. L. Leertouwer, M. Staal, J. T. M. Elzenga and D. G. Stavenga, “Iridescent flowers? Contribution of surface structures to optical signaling,” New Phyt. 203, 667–673 (2014).
29. H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B. J. Glover, “Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators,” Scienc 323, 130–133 (2009).
30. V. Vasas, D. Hanley, P. G. Kevan and L. Chittka, “Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees,” Jour. of Comp. Phys. A 203, 301–311 (2017).
31. Q. O. N. Kay and H. S. Daoud, “Pigment distribution, light reflection structure in petals and cell,” Bota. Jour. of the Linn. Soci. 83, 57–84 (1981).
32. Y. Zhang, T. Hayashi, M. Inoue, Y. Oyama, M. Hosokawa and S. Yazawa, “Flower Color Diversity and Its Optical Mechanism,” Inte. Soci. for Hort. Scie. 766, 469–476 (2008).
33. S. Y. Chen, Y. J. Hsu, C. H. Yeh, S. W. Chen and C. H. Chung, “Pico-projector-based optical sectioning microscopy for 3D chlorophyll fluorescence imaging of mesophyll cells,”Jour. of Opti. 17, 035301 (2015).
34. J. Parkin, “The Glossy Petal of Ranunculus,” Ann. of Bota. 42, 739–755 (1928).
35. C. J. v. d. Kooi, J. T. M. Elzenga, M. Staal and D. G. Stavenga1, “How to colour a flower: on the optical principles of flower coloration,” Proc. R. Soc. B 283: (2016).
36. E. Narbona1 , J. C. d. Valle , M. Arista , M. L. Buide1 and P. L. Ortiz, “Major Flower Pigments Originate Different Colour Signals to Pollinators,” Fron. in Ecol. and Evol. 9, 1–14 (2021).
37. G. Sharmilaa, C. Muthukumarana, E. Suriyaa, R. M. Keerthanaa, M. Kamatchia, N. M. Kumarb, T. Anbarasanc and J. Jeyanthic, “Ultrasound aided extraction of yellow pigment from Tecoma castanifolia floral petals: Optimization by response surface method and evaluation of the antioxidant activity,” Indu. Crops & Prod. 130, 467–477 (2019).
38. S. Gamsjaeger, M. Baranska, H. Schulz, P. Heiselmayere and M. Mussoa, “Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola x wittrockiana) by FT-Raman spectroscopy,” Jour. of Raman Spec. 42, 1240–
1247 (2011).
39. P. Kubelka and F. Munk, “Ein Beitrag Zur Optik Der Farbanstriche,” Zeitschrift für Technische Physik 12(11), 593–601 (1931)
40. V. D.-Malčić, Ž. B.-Mikočević, and K. Itrić, “Kubelka-Munk theory in describing optical properties of paper (I),” Teh. Vjesn. 18(1), 117-124 (2011).
41. Z. C. Orel, M. K. Gunde, B. Orel, “Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints,” Prog. in Orga. Coatings 30, 59–66 (1997).
42. D. G. Stavenga and C. J. van der Kooi, “Coloration of the Chilean Bellflower Nolana paradoxa, interpreted with a scattering and absorbing layer stack model,” Planta 243, 171–181 (2016).
43. D. G. Stavenga, H.L. Leertouwer, P. Pirih, and M.F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opti.expr. 17, 193–202 (2009).
44. M. Saxena, G. Eluru and S. S. Gorthi, “Structured illumination microscopy,” Adva. in Opti. and Phot. 7, 241-275 (2015).
45. Wilson T , “Optical sectioning in fluorescence microscopy,”J. Microsc. 242, 111-116 (2011).
46. D. Dan, B. Yao and M. Lei, “Structured illumination microscopy for super-resolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291-1307 (2014).
47. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Letters 22, 1905–1905 (1997).
48. B. Valeur, Molecular Fluorescence: Principles and Applications, (2001).
49. J. I. G. Plazaolaa, B. F. Marína, S. O. Dukec, A. Hernández, F. L. Arbeloa and J. M. Becerril, “Autofluorescence: Biological functions and technical applications,” Plan. Scie. 236, 136–145 (2015).
50. G. Bartosz, M. G. Pietrasiewicz and I. S. Bartosz, “Fluorescent products of anthocyanidin and anthocyanin oxidation,” J. Agric. Food Chem. 68, 12019–12027 (2020).
51. H. K. Lichtenthaler, and C. Buschmann, “Chlorophyll Fluorescence Spectra of Green Bean Leaves,” J. Plant Physiol. 129, 137–147 (1987).
52. 許家維, “黑斑龍膽花瓣表面結構及其光學特性之研究,” (國立中央大學, 2020).
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2022-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明