參考文獻 |
參考文獻
[1] F. Ding, Z. Wang, S. He, V. M. Shalaev, A. V. Kildishev, ACS Nano 2015, 9,
4111.
[2] K. L. Kelly, E. Coronado,L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668 (2003)
[3] W. T. Chen et al., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images," Nano Letters, vol. 14, no. 1, pp. 225-230. (2014)
[4] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photonics, vol. 2, no. 6, pp. 351-354. (2008)
[5] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)
[6] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)
[7] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194 (2016)
[8] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, Art. no. 1600064. (2017)
[9] X. Q. Zhang et al., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)
[10] B. H. Chen et al., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol. 17, no. 10, pp. 6345-6352. (2017)
[11] Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., & Zhang, S.
(2015). Metasurface holograms reaching 80% efficiency. Nature
Nanotechnology, 10(4), 308–312.
[12] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802), pp. 45-57. (1984)
[13] Ni, X., Wong, Z. J., Mrejen, M., Wang, Y., & Zhang, X. (2015). An ultrathin
invisibility skin cloak for visible light. Science, 349(6254), 1310–1314.
[14] Huang, Y.-W., Chen, W. T., Tsai, W.-Y., Wu, P. C., Wang, C.-M., Sun, G., &
Tsai, D. P. (2015). Aluminum Plasmonic Multicolor Meta-Hologram. Nano
Letters, 15(5), 3122–3127.
[15] Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., &
Kuznetsov, A. I. (2015). High-transmission dielectric metasurface with 2π
phase control at visible wavelengths. Laser & Photonics Reviews, 9(4), 412–
418.
[16] Park, J.-S., Zhang, S., She, A., Chen, W. T., Lin, P., Yousef, K. M. A., …
Capasso, F. (2019). All-glass, large metalens at visible wavelength using deep-
ultraviolet projection lithography. Nano Letters.
[17] Fan, Z.-B., Shao, Z.-K., Xie, M.-Y., Pang, X.-N., Ruan, W.-S., Zhao, F.-L., …
Dong, J.-W. (2018). Silicon Nitride Metalenses for Close-to-One Numerical
Aperture and Wide-Angle Visible Imaging. Physical Review Applied, 10(1).
[18] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B., & Capasso,
F. (2017). Metasurface Polarization Optics: Independent Phase Control of
Arbitrary Orthogonal States of Polarization. Physical Review Letters, 118(11). [19] Emani, N. K., Khaidarov, E., Paniagua-Domínguez, R., Fu, Y. H., Valuckas, V.,
Lu, S., … Kuznetsov, A. I. (2017). High-efficiency and low-loss gallium nitride
dielectric metasurfaces for nanophotonics at visible wavelengths. Applied
Physics Letters, 111(22), 221101.
[20] Song, Q., Baroni, A., Sawant, R., Ni, P., Brandli, V., Chenot, S., … Genevet, P.
(2020). Ptychography retrieval of fully polarized holograms from geometric-
phase metasurfaces. Nature Communications, 11(1).
[21] Li, L., Liu, Z., Ren, X., Wang, S., Su, V.-C., Chen, M.-K., … Tsai, D. P.
(2020). Metalens-array–based high-dimensional and multiphoton quantum
source. Science, 368(6498), 1487–1490.
[22] Lin, R. J., Su, V.-C., Wang, S., Chen, M. K., Chung, T. L., Chen, Y. H., … Tsai,
D. P. (2019). Achromatic metalens array for full-colour light-field imaging.
Nature Nanotechnology.
[23] T. Kawashima, H. Yoshikawa, S. Adachi. Optical properties of hexagonal
GaN, J. Appl. Phys. 82, 3528-3535 (1997)
[24] H. R. Philipp, "Silicon dioxide (SiO2) glass," in Handbook of Optical Constants
of Solids, E. D. Palik, ed. (Academic, 1985), Vol. I, pp. 749.
[25] R. C. Jones, J. Opt. Soc. Am. 31, 488 ; 31, 500. (1941)
[26] Chen.Yi.Yu. Qiu-Chun Zeng, “Scattering Analysis and Efficiency Optimization
of Dielectric Pancharatnam–Berry-Phase Metasurfaces” Nanomaterials 2021, 11,
586.(2021)
[27] https://www.nidek-intl.com/product/coating_technical/coating_type_1.html
[28] 1) D. T. Pierce and W. E. Spicer, Electronic structure of amorphous Si from
photoemission and optical studies, Phys. Rev. B 5, 3017-3029 (1972)
2) Handbook of Optical Constants of Solids, Edward D. Palik, ed. Academic
Press, Boston, 1985 (ref. 2 provides numerical values for the graphical data
reported in ref. 1)
[29] Bendavid, P.J. Martin, Deposition and Modification of Titanium
Dioxide Thin Films Prepared by Filtered Arc Deposition, Thin
Solid Films, Vol. [360], (2000), 24.
[30] F. Lemarchand, private communications (2013). Measurement method described
in: L. Gao, F. Lemarchand, and M. Lequime. Exploitation of multiple incidences
spectrometric measurements for thin film reverse engineering, Opt. Express 20, 15734-15751 (2012)
[31] S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph, T.A.F. König, Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating, ACS Appl. Mater. Interfaces, 11, 13752-13760 (2019)
(Numerical data kindly provided by Dr. Tobias König)
[32] L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, J. A. Aznárez. Self-
consistent optical constants of SiO2 and Ta2O5 films, Opt. Mater. Express 6, 3622-3637 (2016) (Numerical data kindly provided by Juan Larruquert)
[33] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015)
[34] A significant portion of the materials follow “Photonic Devices,”
Jia-Ming Liu, Chapter 2 |