博碩士論文 107256010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.216.32.251
姓名 廖育萱(Yu-Hsuan Liao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 全介電幾何相位超穎表面的 抗反射設計
(Design anti-reflection for all-dielectric geometric phase metasurface)
相關論文
★ 從「紅葉」到「黑鷹」:台灣棒球醜聞的文化再現★ 基於音頻訊號隱藏技術之聲波數位傳輸
★ 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究★ 奈米壓印技術製作全介電幾何相位超穎表面
★ 混合式超穎介面於感光元件之應用★ 以自製灰階曝光機製作各式微光學元件
★ 高效率低深寬比幾何相位超穎介面★ 以雙面非等向性濕蝕刻製備單晶石英深穿孔
★ 奈米壓印技術製作全介電光學繞射元件★ 全介電幾何相位超穎表面的設計、優化及簡化模型
★ 以超穎校正器提升三片式庫克鏡組光學品質之研究★ 以熱壓及光固化奈米壓印技術製作公分 等級奈微米光學元件
★ 基於超穎校正器改善庫克三透鏡的光學性能之研究★ 藉由散射強化輻射冷卻發電之研究
★ 以人工智慧模型修復超穎透鏡影像品質之研究★ 基於波導共振之手鏡超穎介面之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-10以後開放)
摘要(中) 本論文將PB-phase之超穎介面的應用簡化為半波板模型,探討將奈米鰭與抗反射層(MgF2)結合後之光學特性及總偏振轉效率(Overall PCE)。當抗反射層為平坦的薄膜結構時,對效率上提升是無貢獻,因此抗反射層需與奈米鰭相同具有結構異向性,將抗反射層置於奈米鰭頂部時,其Overall PCE提升會較穩定。在GaN奈米鰭情況下,當MgF2從0 nm增加到160 nm時,Overall PCE可從53.18% 提升至55.06%,提高1.88%,但因為GaN材料於可見光範圍下會有吸收的損耗,導致效率提升會較困難。使用Nb2O5奈米鰭時,其折射率適中且無吸收特性,相較於GaN其Overall PCE高於1.7倍, 加入MgF2後,Overall PCE從92.38%提升至94.58%,可提升2.2%。
摘要(英) In this thesis, the optical properties and polarization conversion efficiency (P.C.E) has been investigated by combining the anti-reflection layer (MgF2) with the nano-fin. In order to obtain the highest P.C.E, the height of the nano-fin has been considered as a half-wave plate. We numerically demonstrated that a flat anti-reflection film shows no contribution to efficiency improvement. The structural heterogeneity is necessary for the anti-reflection. Moreover, the overall P.C.E can be enhanced more stably when MgF2 stacked on the top of nano-fin.
In the case of the GaN nano-fin, the overall P.C.E is enhance from 53.18% to 55.06% when the height of MgF2 is increased from 0 nm to 160 nm. On the other hand, it is a challenge to enhance the efficiency of GaN based nano-fin due to the absorption loss in the visible light range. Therefore, we numerically investigated the materials that do not suffer from absorption loss in the visible light. Among them, niobium oxide (Nb2O5) becomes a good option because of the fair refractive index and no absorption. In comparison with GaN nano-fin, the overall PCE of Nb2O5 nano-fin is 1.7 times higher. The highest overall P.C.E enhances from 92.38% to 94.58% when MgF2 stacked on the top.
關鍵字(中) ★ 超穎介面 關鍵字(英) ★ metasurface
論文目次 目錄
摘要 vi
Abstract vii
致謝 viii
目錄 ix
圖目錄 xi
表目錄 xiv
第1章 緒論 1
1-1 研究背景 1
1-2超穎介面的相位調製 3
1-3超穎介面的材料應用 5
1-4 研究動機 6
第2章 基本理論 9
2-1光波的偏振(Polarization of Light Wave) 9
2-1.1 瓊斯向量(Jones vectors) 10
2-1.2 瓊斯運算(Jones calculus) 13
2-1.3非等向性介質(Anisotropy media ) 15
2-1.4波板(Wave Plate) 17
2-2等效介質近似理論(Theory of effective medium approximations) 19
2-2.1 一維等效介電近似(1-D effective medium approximations) 19
2-2.2 二維等效介電近似(2-D effective medium approximations) 21
2-3抗反射原理(Theory of anti-reflective) 23
第3章 幾何相位超穎表面抗反射設計 25
3-1 GaN奈米鰭與抗反射層之光學特性 25
3-2 GaN奈米鰭結構之相位分佈 30
3-3 GaN奈米鰭不同高度之光學特性 31
3-4 介電質材料之EMT分析 33
3-5 Nb2O5奈米鰭之光學特性分析 37
3-6 Nb2O5 奈米鰭與抗反射層之光學特性 38
3-7 Nb2O5奈米鰭之GMR現象 40
3-8 奈米鰭梯形結構之光學特性分析 44
第4章 結論 49
參考文獻 50
參考文獻 參考文獻
[1] F. Ding, Z. Wang, S. He, V. M. Shalaev, A. V. Kildishev, ACS Nano 2015, 9,
4111.
[2] K. L. Kelly, E. Coronado,L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668 (2003)
[3] W. T. Chen et al., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images," Nano Letters, vol. 14, no. 1, pp. 225-230. (2014)
[4] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photonics, vol. 2, no. 6, pp. 351-354. (2008)
[5] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)
[6] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)
[7] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194 (2016)
[8] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, Art. no. 1600064. (2017)
[9] X. Q. Zhang et al., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)
[10] B. H. Chen et al., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol. 17, no. 10, pp. 6345-6352. (2017)
[11] Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., & Zhang, S.
(2015). Metasurface holograms reaching 80% efficiency. Nature
Nanotechnology, 10(4), 308–312.
[12] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802), pp. 45-57. (1984)
[13] Ni, X., Wong, Z. J., Mrejen, M., Wang, Y., & Zhang, X. (2015). An ultrathin
invisibility skin cloak for visible light. Science, 349(6254), 1310–1314.
[14] Huang, Y.-W., Chen, W. T., Tsai, W.-Y., Wu, P. C., Wang, C.-M., Sun, G., &
Tsai, D. P. (2015). Aluminum Plasmonic Multicolor Meta-Hologram. Nano
Letters, 15(5), 3122–3127.
[15] Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., &
Kuznetsov, A. I. (2015). High-transmission dielectric metasurface with 2π
phase control at visible wavelengths. Laser & Photonics Reviews, 9(4), 412–
418.
[16] Park, J.-S., Zhang, S., She, A., Chen, W. T., Lin, P., Yousef, K. M. A., …
Capasso, F. (2019). All-glass, large metalens at visible wavelength using deep-
ultraviolet projection lithography. Nano Letters.
[17] Fan, Z.-B., Shao, Z.-K., Xie, M.-Y., Pang, X.-N., Ruan, W.-S., Zhao, F.-L., …
Dong, J.-W. (2018). Silicon Nitride Metalenses for Close-to-One Numerical
Aperture and Wide-Angle Visible Imaging. Physical Review Applied, 10(1).
[18] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B., & Capasso,
F. (2017). Metasurface Polarization Optics: Independent Phase Control of
Arbitrary Orthogonal States of Polarization. Physical Review Letters, 118(11). [19] Emani, N. K., Khaidarov, E., Paniagua-Domínguez, R., Fu, Y. H., Valuckas, V.,
Lu, S., … Kuznetsov, A. I. (2017). High-efficiency and low-loss gallium nitride
dielectric metasurfaces for nanophotonics at visible wavelengths. Applied
Physics Letters, 111(22), 221101.
[20] Song, Q., Baroni, A., Sawant, R., Ni, P., Brandli, V., Chenot, S., … Genevet, P.
(2020). Ptychography retrieval of fully polarized holograms from geometric-
phase metasurfaces. Nature Communications, 11(1).
[21] Li, L., Liu, Z., Ren, X., Wang, S., Su, V.-C., Chen, M.-K., … Tsai, D. P.
(2020). Metalens-array–based high-dimensional and multiphoton quantum
source. Science, 368(6498), 1487–1490.
[22] Lin, R. J., Su, V.-C., Wang, S., Chen, M. K., Chung, T. L., Chen, Y. H., … Tsai,
D. P. (2019). Achromatic metalens array for full-colour light-field imaging.
Nature Nanotechnology.
[23] T. Kawashima, H. Yoshikawa, S. Adachi. Optical properties of hexagonal
GaN, J. Appl. Phys. 82, 3528-3535 (1997)
[24] H. R. Philipp, "Silicon dioxide (SiO2) glass," in Handbook of Optical Constants
of Solids, E. D. Palik, ed. (Academic, 1985), Vol. I, pp. 749.
[25] R. C. Jones, J. Opt. Soc. Am. 31, 488 ; 31, 500. (1941)
[26] Chen.Yi.Yu. Qiu-Chun Zeng, “Scattering Analysis and Efficiency Optimization
of Dielectric Pancharatnam–Berry-Phase Metasurfaces” Nanomaterials 2021, 11,
586.(2021)
[27] https://www.nidek-intl.com/product/coating_technical/coating_type_1.html
[28] 1) D. T. Pierce and W. E. Spicer, Electronic structure of amorphous Si from
photoemission and optical studies, Phys. Rev. B 5, 3017-3029 (1972)
2) Handbook of Optical Constants of Solids, Edward D. Palik, ed. Academic
Press, Boston, 1985 (ref. 2 provides numerical values for the graphical data
reported in ref. 1)
[29] Bendavid, P.J. Martin, Deposition and Modification of Titanium
Dioxide Thin Films Prepared by Filtered Arc Deposition, Thin
Solid Films, Vol. [360], (2000), 24.
[30] F. Lemarchand, private communications (2013). Measurement method described
in: L. Gao, F. Lemarchand, and M. Lequime. Exploitation of multiple incidences
spectrometric measurements for thin film reverse engineering, Opt. Express 20, 15734-15751 (2012)
[31] S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph, T.A.F. König, Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating, ACS Appl. Mater. Interfaces, 11, 13752-13760 (2019)
(Numerical data kindly provided by Dr. Tobias König)
[32] L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, J. A. Aznárez. Self-
consistent optical constants of SiO2 and Ta2O5 films, Opt. Mater. Express 6, 3622-3637 (2016) (Numerical data kindly provided by Juan Larruquert)
[33] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015)
[34] A significant portion of the materials follow “Photonic Devices,”
Jia-Ming Liu, Chapter 2
指導教授 王智明(Chih-Ming Wang) 審核日期 2022-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明