博碩士論文 105389601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:3.145.143.239
姓名 蘇達希(Sutarsis)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 針對奈米多孔碳之表面及孔洞形貌進行優化 以打造具備高可靠度、低自放電的超級電容器
(Optimized Surface and Pore Morphology of Nanoporous Carbon for High Reliability and Low Self-Discharge of Supercapacitors)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 碳系超級電容器用耐高壓電解液研發
★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料★ 石墨烯負極和離子液體電解液於鈉二次電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-11以後開放)
摘要(中) 在現今超級電容工業化中還有許多問題需要解決,而其中又以可靠性以及自放電問題尤為重要,而根據過去文獻,作為電極碳材的孔洞結構、電性以及電化學性質已經被確認為是影響這兩種性質的主要原因,因此為了解決這些問題,活性碳電極的製備將會變得格外重要。
在本文的第一部分將會講述對於氮基團在三聚氰胺、氨氣以及一氧化氮等前驅物碳材表面所進行的分子操縱。根據 XPS 元素測定表明一氧化氮氣體在碳材中更容易形成能夠增加電子以及離子導通率的 N-Q (四級氮官能基)結構。由於其更高濃度的 N-Q 以及 N-O 官能基使其沒有太多表面積減少,AC-NO 電極在 2.5 V-3.0 V 的電位範圍中表現出優異的電化學性能和循環穩定性。從恆電流充放曲線中證實AC電極的電荷儲存油電雙層結構所控制,另外還發現AC電極的電荷逸散(即自放電)以及氣體產生反應取決於氮基團的類型,N-Q 結構較 N-5、N-6 結構更有利於抑制不必要的法拉第副反應。另一方面,具有更多 N-Q 結構的 AC-NO 可以增加電極厚度並增加操作電壓至 3.0 V,且不會大幅降低電化學性能和電極結構的完整性。除了活性材料改質外,本懷描述了黏著劑改質對於孔洞結構、可靠性以及自放電行為的影響。與 PVD F即 PTFE 黏著劑相比,CMC+SBR 黏著劑保留了材料的比表面積並產生更多的中孔結構,並從而獲得更多的電荷儲存量、較高的留存率以及更好的3000次充放循環穩定性。使用了 CMC+SBR 的 AC 電極表現出最低的介面電阻 (Rinter)、更高的電子導通率(σ)和擴散係數 (Da),而對於可靠性分析的近一步研究表明,使用了 CMC+SBR 黏著劑的 AC電極在 2.4-3.5 V 的電壓範圍中有較低的漏電流,這表示在有機像電解質中的副反應較其他黏著劑來的少。
在使用了CMC+SBR 黏著劑之後 AC 電極之自放電行為(包含電荷重組以及不必要之法拉第副反應)在 50 小時的靜置中皆有著最低的總電壓衰退,這可以歸因於其最高的電子導通率、高界孔率以及高穩定性。此外,加入了CMC+SBR 黏著劑後能夠允許碳電極在惡劣的環境、高電壓或高溫下進行使用。在對於循環後之電極分析後證實使用CMC+SBR 黏著劑之 AC 電極有最低的介面電阻、更高的擴散係數,且沒有雜質繞射峰,這表明 CMC+SBR 黏著劑能夠有利於更好的電荷分布並防止不必要之法拉第副反應在嚴酷條件下進行操作時發生。
摘要(英) Activated carbon is an essential component for the supercapacitor′s electrodes preparation, whose properties and interactions greatly affect the performances of supercapacitors. Pore structure, electronic properties, and chemical and electrochemical properties of carbon material have been identified as the main factor on reliability problem and self-discharge of supercapacitors, which need to be solved by industrially practical methods.
The first part of this dissertation reported the molecular level manipulation of nitrogen groups configuration on carbon surface that was conducted via post-heat treatment some precursors; melamine, ammonia, and nitrogen monoxide gas. XPS spectral confirmed that NO gas prefers to form higher N-Q formation through nitrogen substitution reaction in carbon bulk, which increased electronic and ionic conductivity. Compared with other electrodes, AC-NO electrode exhibited excellent electrochemical performance and cycle life stability at potential ranges of 2.5 V−3.0 V, due to higher concentration N-Q+N-O groups without much losses of surface area and pore volume. The galvanostatic charge-discharge curve confirmed that the charge storage of AC electrodes is controlled by electrical double layer formation. It also found that the charge leakage and gas evolution of the AC electrode depended on the type of N group, which N-Q being more favorable than N-5 and N-6 to suppress unwanted faradic side reactions. Another advantage, AC-NO with higher N-Q concentration allowed to increased electrode thickness and enlarging cell voltage up to 3.0 V without much reducing the electrochemical performances and electrode structure integrity.
From active material modification to electrode fabrication, this dissertation also describes the effects of various pore structures of binder-modified carbon electrodes on self-discharge behavior and reliability of supercapacitors. The use of CMC+SBR binder preserved specific surface area, pore volume and create more mesopore than PVDF and PTFE binder, leading to higher charge-storage capacity, high retention rate, and better cycle life stability for 3000 cycles. AC+CMC+SBR electrode also showed lower interfacial resistance (Rinter), higher electronic conductivity (σ), and apparent diffusion coefficient (Da) than other AC electrodes. Further investigation on reliability study showed that AC+CMC+SBR electrode had lower leakage current at voltage ranges of 2.4−3.5 V which indicated less parasitic faradic side reactions in organic electrolyte. Dual-phases of SDs were AC+CMC+SBR electrode, charge redistribution, and unwanted faradic side reaction, with the lowest total voltage decay for 50 h which could be attributed to the higher electronic conductivity, high mesopore ratio, and high stability of CMC+SBR. Moreover, employing CMC+SBR binder allowed applying the carbon electrode in severe environments, high voltage, and/or high temperature. SDs post-mortem analysis confirmed that AC+CMC+SBR electrode had the lowest interfacial resistance, better diffusion coefficient, and no impurity diffraction peaks which indicated CMC+SBR binder facilitates preferable charge distribution and prevent undesired parasitic faradic side reactions during severe operation.
關鍵字(中) ★ 超級電容器
★ 自放電的
關鍵字(英) ★ Supercapacitor
★ Self-discharge
論文目次 Table of Content

Covers i
Title of pages ii
NCU Authorization for Dissertation iv
Application to the National Central Library for Deferring the Public Access to the Dissertation v
Advisor’s Recommendation for Doctoral Students vii
Verification Letter from the Oral Examination Committee for Doctoral Students viii
Abstract ix
Acknowledgments xiii
Table of Content xiv
List of Figures xvi
List of Tables xx
Explanation of Symbols xxi
Chapter 1. Motivation and outlines 1
Chapter 2. General research background 4
2.1 The importance of supercapacitors 4
2.1.1 Energy storage mechanism: Electrostatic 4
2.1.2 Capacitance, Energy and Power density 7
2.1.3 Applications 9
2.2 Material for Supercapacitors 10
2.2.1 Activated carbon 11
2.2.1.1 Structure and properties of activated carbon 11
2.2.1.2 Synthesis methods 12
2.2.1.3 Functionalization of activated carbon 13
2.2.2 Organic Electrolytes 15
2.2.3 Binder 16
2.3 Self-Discharge of Supercapacitors 17
2.3.1 Energy of self-discharge 18
2.3.2 Self-discharge mechanisms 19
2.3.3 Several factors control self-discharge 20
2.3.4 Progress on suppressing self-discharge 20
Chapter 3. Controlled nitrogen-heteroatom configuration for high performance and reliability of nanoporous carbon supercapacitors 23
3.1 Introduction 23
3.2 Experimental Methods 26
3.2.1 Materials 26
3.2.2 Oxygen functional group removal 26
3.2.3 Synthesis of N-doped activated carbon 26
3.2.3.1 Melamine treatment 26
3.2.3.2 NH3 gas treatment 27
3.2.3.3 NO gas treatment 27
3.2.4 Electrode preparation 27
3.2.5 Material characterization 27
3.2.6 Electrochemical measurements 29
3.3 Results and discussion 30
3.3.1 Morphology and structure of N-doped nanoporous carbon 30
3.3.2 Electronic and ionic conductivities of N-doped nanoporous carbon 36
3.3.3 Electrochemical performance of N-doped nanoporous carbon 39
3.3.4 Reliability of N-doped activated carbon 44
3.4 Summary 50
Chapter 4. Suppressing self-discharge of nanoporous carbon supercapacitor by pore optimization 51
4.1 Introduction 51
4.2 Experimental Methods 54
4.2.1 Material and electrode preparations 54
4.2.2 Material characterizations 54
4.2.3 Electrochemical measurements 55
4.2.4 Self-discharge measurements 56
4.3 Results and discussion 58
4.3.1 Pore morphology and electrochemical performances 58
4.3.2 Suppressed self-discharge in various operating parameters 65
4.3.3 Cell reliability 78
4.4 Summary 81
Chapter 5. Conclusions and future works 82
5.1 Conclusions 82
5.2 Suggested future works 83
Bibliography 84
Appendix A. Author’s publications 99
參考文獻 1. M. Armand, J. M. Tarascon, Building a better battery, Nature, 2008, 451, 652–657.

2. M. S. Islam, C. A. J. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev., 2014, 43,185–204.

3. N.-S. Choi, Z. H. Chen, S. A. Freunberger, X. L. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angew. Chem., Int. Ed., 2012, 51, 9994–10024.

4. P. Simon, Y. Gogotsi, Material for electrochemical capacitors, Nat. Mater., 2008, 7, 845–854.

5. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media, 2013.

6. J. R. Miller and P. Simon, "Electrochemical capacitors for energy management," Science Magazine, vol. 321, pp. 651-652, 2008.

7. B. E. Conway, Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage, J. Electrochem. Soc., 1991, 138, 1539–1548.

8. Yonggang Wang, Yanfang Song and Yongyao Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev., 2016, 45, 5925—5950

9. Ander González, Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews 58 (2016) 1189–1206

10. Abolhassan Noori, Maher F. El-Kady, Mohammad S. Rahmanifar, Richard B. Kaner and Mir F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond , Chem. Soc. Rev., 2019,48, 1272-1341

11. D. L. Chapman, "LI. A contribution to the theory of electro capillarity," The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 25, pp. 475-481, 1913

12. L. Pilon, H. Wang, and A. d’Entremont, "Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors," Journal of The Electrochemical Society, vol. 162, pp. A5158-A5178, 2015

13. Sanliang Zhang, Ning Pan, Supercapacitors Performance Evaluation, Adv. Energy Mater. 2015, 5, 1401401

14. A.G. Pandolfo, A.F. Hollenkamp. Carbon properties and their role in supercapacitors, Journal of Power Sources 157, 2006, 11–27

15. E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001

16. J. R. Miller, "Electrochemical capacitor thermal management issues at high-rate cycling," Electrochimica Acta, vol. 52, pp. 1703-1708, 2006.

17. http://www.aowei.com/case_view.php?typeid=1&id=4.

18. http://baike.baidu.com/link?url=IzlpZIawcdNNLxZkFDOCUNJrQYwPs_e0Quh23s90Hd8aGeTm4oahoouno-LxzCdRfWj0-Ao0tQnmqLbrXSZ6dMK.

19. K. Kinoshita, X. Chu, Proceedings of the Symposium on Electrochemical Capacitors, vol. 95-25, The Electrochemical Society, Pennington, NJ, 1995, p. 171.

20. G. A. Snook, P. Kao, and A. S. Best, "Conducting-polymer-based supercapacitor devices and electrodes," Journal of Power Sources, vol. 196, pp. 1-12, 2011

21. M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, "Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review," Nanoscale, vol. 5, pp. 72-88, 2013.
22. Zhang. L.L., Zhao. X.S. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009; 38 (9): 2520–31

23. HASSLER, J. W. Purification with activated carbon. New York, Chemical Publishing Co., 1974

24. BOCKRIS, J. C. In Chemistry and physics of carbon, vol. 5, Walker, P.C. (00.). New York, Marcel Dekker, 1969.

25. MAITSON, J.S., and MARK, H.B. Activated carbon. New York, Marcel Dekker, 1971.

26. G.J. Mc-Dougall, The physical nature and manufacture of activated carbon, J.S. Afr. Inst. Min. Metal. vol. 91, no.4. 1991. pp.109-120.

27. S. Biniak, A. Swiatkowski, M. Pakula, L.R. Radovic (Eds.), Chemistry and Physics of Carbon, vol. 27, Marcel Dekker, New York, 2001, p.125.

28. A. Espinola, P.M. Miguel, M.R. Salles, A.R. Pinto, Electrical properties of carbons—resistance of powder materials, Carbon 24 (1986), 33.

29. Simon P, Burke A. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 2008;17(1):38–44.

30. Wei .L, Yushin. G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012; 1 (4): 552–65.

31. HOLDEN, M.J. Manufacture and uses of activated carbon. Effluent and Wat. Treat. J., vol.22, no.1. 1982. p.27

32. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, NJ, USA, 1993

33. R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York, 1988 (Chapter 2).

34. D. Lozano-Castell´o, D. Cazorla-Amor´os, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte, Carbon, 41, 2003, 1765.

35. C.A. Leon y Leon, L.R. Radovic, Chemistry and Physics of Carbon, vol. 24, Marcel Dekker, New York, 1994, p. 213

36. K. Kinoshita, Carbon: Electrochemical and Physiochemical Properties, Wiley–Interscience, New York, 1988

37. B.R. Puri, P.L. Walker (Eds.), Chemistry and Physics of Carbon, vol. 6, Marcel Dekker, New York, 1970, p. 191

38. M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. Monte, J. H. Clark, M. J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 2015, 44, 250-290.

39. L. Chen, Z. Huang, H. Liang, H. Gao, S. Yu, Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors, Adv. Funct. Mater.2014, 24, 5104

40. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 2011, 11, 2472

41. Zhong. C., Deng. Y., Hu. W., Qiao. L., Zhang. L., Zhang. L. A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev., 2015,44, 7484-7539.

42. A. Burke and M. Miller, The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications, J. Power Sources, 2011, 196, 514-522.

43. A. Yu, V. Chabot and J. Zhang, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, 2013.

44. A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, S. Passerini, Ionic liquids in supercapacitors, MRS Bull., 2013, 38, 554-559.

45. G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors," Chemical Society Reviews, vol. 41, pp. 797-828, 2012

46. K. Naoi, ′Nanohybrid capacitor′: the next generation electrochemical capacitors, Fuel Cells, 2010, 10, 825-833

47. B. Song, F. Wu, Y. Zhu, Z. Hou, K.-s. Moon, and C.-P. Wong, "Effect of polymer binders on graphene-based free-standing electrodes for supercapacitors," Electrochimica Acta, vol. 267, pp. 213-221, 2018

48. H. Zhao, Z. Wang, P. Lu, M. Jiang, F. Shi, X. Song, Z. Zheng, X. Zhou, Y. Fu, and G. Abdelbast, "Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design," Nano letters, vol. 14, pp. 6704-6710, 2014.

49. Hao Chen, Min Ling, Luke Hencz, Han Yeu Ling, Gaoran Li, Zhan Lin, Gao Liu, and Shanqing Zhang. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices, Chem. Rev. 2018, 118, 8936−8982.

50. Taberna, P.; Simon, P.; Fauvarque, J.-F. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 2003, 150, A292−A300.

51. Sun, X.; Zhang, X.; Zhang, H.; Huang, B.; Ma, Y. Application of a Novel Binder for Activated Carbon-Based Electrical Double Layer Capacitors with Nonaqueous Electrolytes. J. Solid State Electrochem, 2013, 17, 2035−2042.

52. N. Jäckel, D. Weingarth, M. Zeiger, M. Aslan, I. Grobelsek, and V. Presser, "Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes," Journal of Power Sources, vol. 272, pp. 1122-1133, 2014.

53. B. E. Conway, W.G. Pell and T-C. Liu, Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries, J. Power Sources, 1997, 65, 53–59.

54. I. S. Ike, I. Sigalas and S. Iyuke, Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review, Phys. Chem. Chem. Phys., 2016, 18, 661–680.

55. Q. D. Nguyen, Y. H. Wu, T. Y. Wu, M. J. Deng, C. H. Yang, J. K. Chang, Gravimetric/volumetric capacitances, leakage current, and gas evolution of activated carbon supercapacitors, Electrochim. Acta, 2016, 222, 1153–1159

56. R. Kotz, M. Hahn, P. Ruch, R. Gallay, Comparison of pressure evolution in supercapacitor devices using different aprotic solvents, Electrochem. Commun., 2008, 10, 359–362.

57. J. Kim, E. Kim, U. Lee, I. Lee, S. Han, H. Son, S. Yoon, Nondisruptive in situ Raman analysis for gas evolution in commercial supercapacitor cells, Electrochim. Acta, 2016, 219, 447–452.

58. C. H. Yang, Q. D. Nguyen, T. H. Chen, A. S. Helal, J. Li and J. K. Chang, Functional Group-Dependent Supercapacitive and Aging Properties of Activated Carbon Electrodes in Organic Electrolyte, ACS Sustain. Chem. Eng., 2018, 6, 1208–1214.

59. M. Hahn, R. Kotz, R. Gallay and A. Siggel, Pressure evolution in propylene carbonate based electrochemical double layer capacitors, Electrochim. Acta, 2006, 52, 1709–1712

60. E. C. Jerabek and S. F. Mansfield, U.S. Patent, 6,084,766, 2000

61. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci. 2015, 8, 702–730

62. R. Kotz, M. Hahn, R. Gallay, Temperature behavior and impedance fundamentals of supercapacitors, J. Power Sources, 2006, 154, 550–555.

63. O. Bohlen, J. Kowal, D. U. Sauer, Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model, J. Power Sources, 2007, 172, 468–475.

64. D. C. Amoros, D. L. Castello, E. Morallon, M. J. B. Martinez, A. L. Solano and S. Shiraishi, Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate, Carbon, 2010, 48, 1451–1456.

65. P. Azais, L. Duclaux, P. Florian, D. Massiot, M. A. L. Rodenas, A. L. Solano, J. P. Peres, C. Jehoulet, F. Beguin, J. Power Sources, 2007, 171, 1046–1053

66. Li, "Nitrogen-doped Activated Carbon for High Energy Hybrid Supercapacitor," Energy & Environmental Science, pp. 1-5, 2015.

67. D. S. Torres, "Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions," Carbon, vol. 82, pp. 205-213, 2014.

68. E. Frackowiak, "Supercapacitors Based on Carbon Materials and Ionic Liquids," J. Braz. Chem. Soc., vol. 17, no. 6, pp. 1074-1082, 2006.

69. G. Lota, "Effect of nitrogen in carbon electrode on the supercapacitor performance," Chemical Physics Letters, vol. 404, p. 53–58, 2005.

70. S. L. Candelaria, "Nitrogen modification of highly porous carbon for improved supercapacitor performance," J. Mater. Chem, vol. 22, p. 9884–9889, 2012.

71. B. B. Garcia, "High performance high-purity sol-gel derived carbon supercapacitors from renewable sources," Renewable Energy, vol. 36, pp. 1788-1794, 2011

72. D. Hulicova, "Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors," Chem. Mater, vol. 18, no. 9, pp. 2318-2326, 2006.

73. G. Lota, "Pseudocapacitance effects for enhancement of capacitor performance," Fuel cells, vol. 10, p. 848–855, 2010.

74. E. Frackowiak, "Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content," Electrochimica Acta, Vols. 2209-2214, p. 51, 2006.

75. R. Shao, "Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes," ACS Appl. Mater. Interfaces, vol. 9, pp. 42797-42805, 2017.

76. S. Shiraishi, "Heat-treatment and Nitrogen-doping of Activated Carbons for High Voltage Operation of Electric Double Layer Capacitor," Key Engineering Materials, vol. 497, pp. 80-86, 2012

77. D. H. Jurcakova, "Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors," Adv. Funct. Mater, vol. 19, p. 438–447, 2009.

78. A. Laheaar, S. D. Ouldriane, E. Lust, F. Beguin, Ammonia treatment of activated carbon powders for supercapacitor electrode application, J. Electrochem. Soc., 2014, 4, 161, A568–A575.

79. R. J. J. Jansen and H. V. Bekkum, XPS of nitrogen-containing functional groups on activated carbon, Carbon, 1995, 33, 8, 1021–1027.

80. M. Seredych, D. H. Jurcakova, G. Q. Lu, T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 2008, 46, 1475–1488.

81. Y. Wang, H. Xuan, G. Lin, F. Wang, Z. Chen, X. Dong, A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application, J. Power Sources, 2016, 319, 262–270.

82. Z. Ding, V. Trouillet, S. Dsoke, Are functional groups beneficial or harmful on the electrochemical performance of activated carbon electrodes?, J. Electrochem. Soc., 2019, 166, 6, A1004–A1014.

83. M. Zhou, "Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors," Carbon, vol. 64, pp. 185-194, 2014.

84. Y. Lu, L. M. Santino, S. Acharya, H. Anandarajah and J. M. D’Arcy, Studying electrical conductivity using a 3D printed four-point probe station, J. Chem. Educ. 2017, 94, 950–955.

85. L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutiérrez, S. P. Chockalingam, C. J. Arguello, L. Pálová, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, A. N. Pasupathy, Science, 2011, 333, 999–1003.

86. F. Bonhomme, J. C. Lasse`gues, L. Servant, Raman spectroelectrochemistry of a carbon supercapacitor, J. Electrochem. Soc., 2001, 148, 11, E450–E458.

87. G. Lota, K. Fic and E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications, Energy Environ. Sci., 2011, 4, 1592–1605.

88. T. H. Chen, C. H. Yang, C. Y. Su, T. C. Lee, Q. F. Dong and J. K. Chang, Electrolyte Engineering: Optimizing High‐Rate Double‐Layer Capacitances of Micropore‐and Mesopore‐Rich Activated Carbon, ChemSusChem, 2017, 10, 3534–3539.

89. X. Liu, Y. Wang, L. Zhan, W. Qiao, X. Liang and L. Ling, Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors, J. Solid State Electrochem, 2011, 15, 413–419.

90. P. Ahuja, V. Sahu, S. K. Ujjain, R. K. Sharma, G. Singh, Performance evaluation of Asymmetric Supercapacitor based on Cobalt manganite modified graphene nanoribbons, Electrochim. Acta, 2014, 146, 429–436.

91. D. I. Abouelamaiem, M. J. M. López, G. He, D. Patel, T. P. Neville, I. P. Parkin, D. L. Castelló, E. Morallón, D. C. Amorós, A. B. Jorge, R. Wang, S. Ji, M. M. Titirici, P. R. Shearing, D. J. L. Brett, New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors, J. Energy Storage, 2018, 19, 337–347.

92. B. Szubzda, A. Szmaja, A. Halama, Influence of structure and wettability of supercapacitor electrodes carbon materials on their electrochemical properties in water and organic solutions, Electrochim. Acta, 2012, 86, 255–259.

93. D. S. Torres, "Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions," Carbon, vol. 82, pp. 205-213, 2014.

94. A. Yoshida, I. Tanahashi and A. Nishino, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 1990, 28, 611–615.

95. A. K. Kinage, P. P. Upare, A. B. Shivarkar, S. P. Gupte, Highly Regio-Selective Synthesis of β-Amino Alcohol by Reaction with Aniline and Propylene Carbonate in Self Solvent System over Large Pore Zeolite Catalyst, Green Sustain Chem, 2011, 01, 76–84

96. S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi, Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors, J. Electrochem. Soc., 2009, 156, A563-A571.

97. M. Hahn, A. Wursig, R. Gallay, P. Novak, R. Kotz, Gas evolution in activated carbon/propylene carbonate based double-layer capacitors, Electrochem. Commun., 2005, 7, 925-930.

98. R. German, P. Venet, A. Sari and J. M. Vinassa, Electrochemical Double Layer Capacitors (supercapacitors) ageing impacts and comparison on different impedance models, EPE Journal, 2014, 24, 3, 1–8.

99. N. Nanbu, T. Ebina, H. Uno, S. Ishizawa, Y. Sasaki, Physical and electrochemical properties of quaternary ammonium bis (oxalato) borates and their application to electric double-layer capacitors, Electrochim. Acta 2006, 52, 1763–1770.

100. T. Ebina, H. Uno, S. Ishizawa, N. Nanbu, and Y. Sasaki, Use of tetraethylammonium bis (oxalato) borate as electrolyte for electrical double-layer capacitors, Chem. Lett. 2005, 34, 7, 1014–1015.

101. Ricketts, B. W.; That, C.T. Self-discharge of carbon-based supercapacitors with organic electrolytes. J. Power Sources. 2000, 89, 64−69.

102. Han, Y.; Lai, Z.; Wang, Z.; Yu, M.; Tong, Y.; Lu, X. Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chem. Eur. J. 2018, 24, 7312−7329.

103. Szubzda, B.; Szmaja, A.; Halama, A. Influence of structure and wettability of supercapacitor electrodes carbon materials on their electrochemical properties in water and organic solutions. Electrochim. Acta. 2012, 86, 255–259.

104. Lozano-Castelló, D.; Cazorla-Amorós, D.; A. Linares-Solano, A.; Shiraishi, S. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon. 2003, 41, 1765–1775.

105. Abbas, Q.; Pajak, D.; Frąckowiak, E.; Béguin, F. Effect of binder on the performance of carbon/carbon symmetriccapacitors in salt aqueous electrolyte, Electrochim. Acta. 2014, 140, 132–138.

106. Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018, 11, 3096–3127.

107. Jäckela, N.; Weingarth, D.; Schreibera, A.; Krünera, B.; Zeigera, M.; Tolosa, A.; Aslana, M.; Presser, V. Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte. Electrochim. Acta. 2016, 191, 284–298.

108. Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhnag, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Soc. Rev. 2015, 44, 7484−7539.

109. Cho, K.Y.; Kwon, Y.I.; Youn, J.R.; Song, Y.S. Interaction analysis between binder and particles in multiphase slurries, Analyst. 2013, 138, 2044–2050.

110. Ohta, N.; Sogabe, T.; Kuroda, K. A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity. Carbon. 2001, 39, 1421–1446.

111. Liu, W.R.; Yang, M.H.; Wu, H.C.; Chiao, S.M.; Wu, N.L. Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder. Electrochem. Solid-State Lett. 2005, 8(2), A100–A103.

112. Sun, X.; Zhang, X.; Zhang, H.; Huang, B.; Ma, Y. Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes. J. Solid State Electrochem. 2013, 17, 2035–2042.

113. Song, B.; Wu, F.; Zhu, Y.; Hou, Z.; Moon, K.S.; Wong, C.P. Effect of polymer binders on graphene-based free-standing electrodes for supercapacitors. Electrochim. Acta. 2018, 267, 213-221.
114. Black, J.; Andreas H.A. Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim. Acta. 2019, 54, 3568–3574.

115. Conway, B.E.; Pell, W.G.; Liu, T.C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J. Power Sources. 1997, 65, 53–59.

116. Niu, J.; Conway, B.E.; Pell, W.G. Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. J. Power Sources. 2005, 135, 332–343.

117. Azäıs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Rodenas, M.A.L.; Solano, A.L., Peres, J.P.; Jehoulet, C.; Bèguin, F. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources. 2007, 171, 1046–1053.

118. Dyatkin, B.; Presser, V.; Heon, M.; Lukatskaya, M.R.; Beidaghi, M.; Gogotsi, Y. Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem. 2013, 6, p. 2269–2280.

119. Wang, R.; Feng, L.; Yang, W.; Zhang, Y.; Zhang, Y.; Bai, W.; Liu, B.; Zhang, W.; Chuan, Y.; Zheng, Z.; Guan, H. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries. Nanoscale Research Lett. 2017, 12, 575.

120. Yan, X.; Zhang, Y.; Zhu, K.; Gao, Y.; Zhang, D.; Chen, G.; Wang, C.; Wei, Y. Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. J. Power Sources. 2014, 246, 95−102.

121. Park, B.H.; Choi, J.H.; Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application. Electrochim. Acta. 2010, 55, 2888-2893.


122. Paul, A.; Arunkumar, M. Importance of Electrode Preparation Methodologies in Supercapacitor Applications. ACS Omega, 2017, 2, 8039−8050.

123. Fan, Q.; Zhang, W.; Duan, J.; Hong, K.; Xue, L.; Huang, Y. Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery. Electrochim. Acta. 2015, 174, 970–977.

124. Chen, T.H.; Yang, C.H.; Su, C.Y.; Lee, T.C.; Dong, Q.F.; Chang, J.K. Electrolyte Engineering: Optimizing High-Rate Double-Layer Capacitances of Micropore- and Mesopore-Rich Activated Carbon. ChemSusChem. 2017, 10, 3534–3539.

125. Sutarsis; Patra, J.; Su, C.Y.; Li, J.; Bresser, D.; Passerini, S.; Chang, J.K. Manipulation of Nitrogen-Heteroatom Configuration for Enhanced Charge-Storage Performance and Reliability of Nanoporous Carbon Electrodes. ACS Appl. Mater. Interface. 2020, 12, 32797−32805.

126. Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341.

127. Zhang, Z.; Zeng, T.; Lai, Y.; Jia, M.; Li, Jie. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. J. Power Sources. 2014, 247, 1-8.

128. Huang, Y.; Zhao, Y.; Gong, Q.; Weng, M.; Bai, J.; Liu, X.; Jiang, Y.; Wang, J.; Wang, D.; Shao, Y.; Zhao, M.; Zhuang, D.; Liang, J. Experimental and Correlative Analyses of the Ageing Mechanism of Activated Carbon Based Supercapacitor. Electrochim. Acta. 2017, 28, 214–225.

129. Chen, H.; Ling, M.; Hencz, L.; Ling, H.Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem. Rev. 2018, 118, 8936−8982.

130. Pasquier, A.D.; Disma, F.; Bowmer, T.; Gozdz, A.S.; Amatucci, G.; Tarascon, J.M. Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-ion Batteries. J. Electrochem. Soc. 1998, 145, 472−477.

131. Kaus, M.; Kowal, J.; Sauer, D.U. Modelling the effects of charge redistribution during self-discharge of supercapacitors Electrochim. Acta. 2010, 55, 7516–7523.

132. Black, J.; Andreas, H.A.; Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution. J. Power Sources. 2010, 195, 929–935.

133. Ike, I. S.; Sigalas, I.; Iyuke, S.E. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation. J. Eelectronic Materials. 2017, 46, 1163-1189.

134. Zhang, Q.; Rong, J.; Ma, D.; Wei, B. The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ. Sci. 2011, 4, 2152–2159.

135. Kowal, J.; Avaroglu, E.; Chamekh, F.; Šenfelds, A.; Thien, T.; Wijaya, D.; Sauer, D.U. Detailed analysis of the self-discharge of supercapacitors. J. Power Sources. 2011, 196, 573–579.

136. Hao, C.; Wang, X.; Yin, Y.; You, Z. Analysis of Charge Redistribution During Self-discharge of Double-Layer Supercapacitors. J. Electronic Materials. 2016, 45, 2160–2171.

137. Graydon, J.W.; Panjehshahi, M.; Kirk, D.W. Charge redistribution and ionic mobility in the micropores of supercapacitors. J. Power Sources. 2014, 245, 822–829.
指導教授 張仍奎 李勝偉(Jeng-Kuei Chang Sheng-Wei Lee) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明