博碩士論文 109226049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:18.117.8.63
姓名 吳駿霆(Chun-Ting Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 二色性染料摻雜於不同液晶結構之光電特性及其應用之研究
(Studies of electro-optical characteristics of dichroic dyes-doped liquid crystals with various structures and their applications)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 本論文主要分為三個部份,第一部份為探討向列型液晶摻雜二色性染料之特性,研究中為找出二色性染料摻雜於向列型液晶中之穿透度最大可調動態範圍,分別將不同濃度之黑色二色性染料(S428)摻雜於正型向列型液晶(E7)中,並注入於不同厚度及不同配向處理之液晶盒中,如水平配向液晶盒(Homogeneous alignment LC cell)、90°扭轉向列型液晶盒(90°-Twisted Nematic LC cell)及混成配向液晶盒(Hybrid alignment LC cell),並根據其電壓-穿透曲線比較液晶分子排列、液晶層厚度及染料摻雜濃度間對於穿透度變化之影響,且依實驗數據與1D-DIMOS模擬結果比較,並找出該黑色二色性染料於高穿透(低吸收)及高吸收(低穿透)下之吸收係數,亦即A_∥及A_⊥,並將透過與1D-DIMOS與實驗結果所擬合而得之吸收係數與官方提供之Dichroic Ratio (DR)數值相互比較。最後取兩液晶盒正交相鄰兩基板之摩擦配向方向進行交疊,探討液晶於不同結構下之交疊方式對於穿透度可調動態範圍的影響,並與1D-DIMOS模擬結果比較。
第二部份為探討長螺距膽固醇液晶摻雜二色性染料之特性,於第一部份得知扭轉向列型液晶盒有較好之可調動態範圍,故將調整液晶於液晶盒中之旋轉角度,以手性分子(S811)及黑色二色性染料(S428)摻雜於正型向列型液晶(E7)中,透過調整手性分子濃度,將膽固醇液晶之螺距調整為長螺距,並將液晶混合物注入於兩片經水平配向所製成之液晶空盒,為探討液晶和二色性染料之旋轉角度及液晶盒厚度對於穿透度的變化,故將旋轉角度調整為180°、360°、540°及720°,並藉由所量測之電壓-穿透曲線探討旋轉角度對於穿透度的變化量,並將透過第一部份得知的二色性染料吸收係數代入1D-DIMOS中模擬,將此結果進行比較。
第三部份為探討正型向列型液晶中摻雜多種二色性染料之特性,於第一部份及Beer-Lambert定律得知,若二色性染料DR值越大,其穿透度之可調範圍越大,故此部分將更改摻雜二色性染料種類,將多種二色性染料(AB4、AZO1及AC1)摻雜於正型向列型液晶(E7)中,並將液晶混合物注入於兩片經水平配向所製成之液晶空盒,根據其電壓-穿透曲線,探討摻雜多種二色性染料之液晶層厚度對於穿透度變化之影響,且依實驗數據與1D-DIMOS模擬數據相比較,並找出該混合多種二色性染料後之有效吸收係數,包含A_∥及A_⊥,並與第一部份黑色二色性染料與第三部份多種二色性染料之DR值相互比較。最後取兩水平配向液晶盒以正交相鄰兩基板之摩擦配向方向進行交疊,探討與此情況下之交疊方式對於穿透度的變化量,並由1D-DIMOS模擬結果與實驗結果進行比較。
摘要(英) The main research topics in this thesis include the following three parts. In the first part, the characteristics of dichroic dyes-doped nematic liquid crystals (DD-NLCs) and the maximum adjustable dynamic range of transmittance of DD-NLCs are discussed in detail. To achieve the absorption state, LCs with positive dielectric anisotropy (E7) doped with various concentrations of dichroic dyes (S428) are filled into LC cells with various thicknesses and/or various structures, such as homogeneous alignment (HA), twisted nematic (TN), and hybrid alignment (HB) LC cells. Based on the influences of LC arrangement, LC layer thickness, and concentration of the doped dyes on the changes of transmittance, the absorption coefficients (A_⊥ and A_∥) are determined by experimental results and 1D-DIMOS simulation results. We found that the obtained absorption coefficients are consistent with the official absorption coefficients. Finally, to enhance the performance of adjustable dynamic range of transmittance, two LC cells with the same/different structures are tandem overlapped. It should be noted that the two DD-NLC cells with the required arrangement that the LC director close to the last layer of the first DD-NLC cell should be perpendicular to that close to the first layer of the second DD-NLC cell.
The second part in this thesis is the study of the characteristics of dichroic dyes-doped cholesteric liquid crystals (DD-CLCs) with long pitch lengths. According to the results of the first part, dyes-doped TNLC cell has the largest adjustable dynamic range of transmittance. Therefore, the effect of twisted angles of dyes-doped TNLCs will be examined here. To achieve the dyes-doped TNLCs with various twisted angles, LCs (E7) mixed with dichroic dyes (S428) and chiral dopant (S811) are filled into empty LC cells, whose substrates are coated with orthogonal homogeneous alignment films with mechanical rubbing process. For the purpose of finding the influences of twisted angle onto the changes of transmittance, we adjust the concentrations of the doped chiral dopant to fabricate LC cells with twisted angles of 180°, 360°, 540° and 720°. Finally, we compare the experimental results with the 1D-DIMOS simulation results to verify the effect of twisted angles.
The third part in this thesis is the study of the characteristics of multi-dichroic dyes-doped nematic LC. As is well known, the higher the dichroic ratio of dichroic dyes, the wider the adjustable dynamic range of transmittance. Therefore, we chose the three kinds of dichroic dyes, including AB4, AZO1 and AC1, whose dichroic ratios are 12.1, 11.8, and 13.6, respectively. Next, multi-dichroic dyes (AB4, AZO1, and AC1) -doped LCs with positive dielectric anisotropy (E7) are filled into LC cells with various thicknesses, whose substrates are coated with homogeneous alignment films with mechanical rubbing process. Based on the influences of LC arrangement, LC layer thickness, and concentration of the doped dyes on the changes of transmittance, the absorption coefficients (A_⊥ and A_∥) are determined by experimental results and 1D-DIMOS simulation results. Finally, we compare the dichroic ratio of multi-dichroic dyes to that of dichroic dyes (S428).
關鍵字(中) ★ 液晶
★ 二色性染料
★ 賓主效應
關鍵字(英) ★ liquid crystal
★ dichroic dyes
★ guest-host effect
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
符號說明 xiv
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 相關文獻回顧 2
§1-4 論文架構 6
第二章 液晶簡介 7
§2-1 液晶定義 7
§2-2 液晶歷史 8
§2-3 液晶的分類 9
§2-3-1 盤狀液晶分子 10
§2-3-2 棒狀液晶分子 11
§2-4 液晶的物理性質 16
§2-4-1 秩序參數(Order Parameter)[14] 16
§2-4-2 光學異向性(Optical Anisotropy)[16] 17
§2-4-3 液晶的介電異向性(Dielectric Anisotropy)[18] 22
§2-4-4 溫度對液晶的影響 23
§2-4-5 連續彈性體理論(Continuum Theory) 24
第三章 實驗相關原理 26
§3-1 表面配向膜 26
§3-1-1 水平配向(Homogeneous alignment) 26
§3-1-2 垂直配向(Homeotropic alignment) 27
§3-1-3 混成配向(Hybrid alignment) 28
§3-2 膽固醇液晶結構之切換 28
§3-2-1 正型膽固醇液晶 (Δε > 0) 28
§3-2-2 負型膽固醇液晶(Δε< 0) 30
§3-3 二色性染料[20] 31
§3-3-1 Beer-Lambert定律[21] 32
§3-3-2 賓主效應(Guest-Host effect) 33
第四章 實驗方法與過程 37
§4-1 實驗材料 37
§4-1-1 正型向列型液晶E7 37
§4-1-2 手性分子S811[23] 38
§4-1-3 二色性染料 39
§4-2 液晶盒製作 40
§4-2-1 材料調配 40
§4-2-2 玻璃基板之裁切與清理 41
§4-2-3 玻璃基板表面配向處理 42
§4-2-4 液晶空盒製作 43
§4-2-5 液晶空盒之厚度量測 43
§4-2-6 液晶注入液晶空盒 45
§4-3 實驗架構 45
§4-3-1 量測液晶樣品之光電特性 45
§4-3-2 於偏光顯微鏡下之觀測 47
第五章 實驗結果與討論 49
§5-1 向列型液晶摻雜二色性染料之特性與探究 49
§5-1-1 正型液晶摻雜二色性染料於不同液晶盒厚度及結構下之影響及1D-DIMOS模擬結果 49
§5-1-2 正型液晶於不同結構下摻雜不同濃度二色性染料之影響及1D-DIMOS模擬結果 55
§5-1-3 於不同結構下之雙液晶盒疊加與1D-DIMOS模擬結果 57
§5-2 長螺距膽固醇液晶摻雜二色性染料之特性與探究 61
§5-2-1 膽固醇液晶旋轉角度對於穿透度關係之影響及1D-DIMOS模擬結果 61
§5-2-2 膽固醇液晶摻雜二色性染料之厚度對於穿透度之影響及1D-DIMOS模擬結果 64
§5-3 正型向列型液晶中摻雜多種二色性染料之特性與探究 66
§5-3-1 正型液晶摻雜多種二色性染料(濃度固定)對於穿透度之影響及1D-DIMOS模擬結果 66
§5-3-2 雙液晶盒之正型液晶摻雜多種二色性染料對於穿透度之影響與1D-DIMOS模擬結果 70
第六章 結論與未來展望 74
§6-1 結論 74
§6-1-1 向列型液晶摻雜二色性染料之特性與探究 74
§6-1-2 長螺距膽固醇液晶摻雜二色性染料之特性與探究 77
§6-1-3 正型向列型液晶中摻雜多種二色性染料之特性與探究 79
§6-2 未來展望 80
參考文獻 85
參考文獻 [1]https://www.e-tintproducts.com/ctrl-eyewear/
[2]W. F. Cheng, J. C. Lai, S. T. F. Jie, C. K. Liu, and K. T. Cheng, “Scattering-/absorption-mode light shutters based on dye-doped fingerprint chiral textures,” Dyes Pigment. 163, 78-85 (2019).
[3]J. C. Lai, W. F. Cheng, C. K. Liu, and K. T. Cheng, “Optically switchable bistable guest–host displays in chiral-azobenzene- and dichroic-dye-doped cholesteric liquid crystals,” ‎ Dyes Pigment. 163, 641-646 (2019).
[4]G. H. Heilmeier and L. A. Zanoni, “Gust-Host interaction in nematic liquid crystal,” Appl. Phys. Lett. 13, 91 (1968).
[5]D. L. White and G. N. Taylor, “New absorptive mode reflective liquid crystal display device,” J. Appl. Phys. 45, 91 (1974).
[6]C. C. Li, H. Y. Tseng, H. C. Liao, H. M. Chen, T. Hsieh, S. A. Lin, H. C. Jau, Y. C. Wu, Y. L. Hsu, W. H. Hsu and T. H. Lin, “Enhanced image quality of OLED transparent display by cholesteric liquid crystal backpanel,” Opt. Express 25, 29199-29206 (2017).
[7] R. Shashidhar and G. Venkatesh, J. de Physique Colloque, 40, C3 (1979).
[8]F. Reinizer, “Beitrage zur kenntniss des cholesterins,” Monatsh. Chem. 9, 421-41 (1888).
[9]O. Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[10]S. Chandrasekhar, “Recent developments in the physics of liquid crystals,” Contemp. Phys. 29, 527 (1988).
[11]G. Friedel, “Les états mésomorphes de la matière,” Ann. de Physique 18, 273 (1922).
[12]P. G. de Gennes and J. Prost, “The Physics of Liquid Crystal 2nd,” Oxford University Press, New York. (1993).
[13]H. S. Kitzerow, C. Bahr, “Chirality in Liquid Crystals”, Springer, New York (2001).
[14]D.-K. Yang and S.-T. Wu, “Fundamentals of Liquid Crystal Devices 2nd,” John Wiley & Sons, Ltd. (2014).
[15]P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” Taylor & Francis Ltd. (1997).
[16]A. Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, Ltd. (1983).
[17]G. R. Fowles, “Introduction to Modern Optics,’’ 2nd ed., University of Utah, New York. (1975).
[18]P. G. de Gennes and J. Prost, “The Physics of Liquid Crystal 2nd,” Oxford University Press, New York. (1993).
[19]C. W. Oseen, “The Theory of Liquid Crystals,” Trans. Faraday Soc. 29, 883 (1933).
[20]E. Hecht, “Optics 4th,” Addison-Wesley, New York. (2001).
[21]A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Annalen der Physik und Chemie, 86(5), 78 (1852).
[22]陳言愈,電控及光控膽固醇液晶光柵之研究(光電科學與工程研究所,碩士論文,2011).
[23]K. T. Cheng, P. Y. Lee, M. M. Qasim, C. K. Liu, W. F. Cheng, and T. D. Wilkinson “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces 8, 10483–10493 (2016).
[24]https://www.yamamoto-chemicals.co.jp/english/products/products01_02/
[25]https://www.nematel.de/dichroic-dyes/
[26]Y. H. Lee, K. C. Huang, W. Lee,and C. Y. Chen, “Low-Power Displays With Dye-Doped BistableChiral-Tilted Homeotropic Nematic Liquid Crystals,” Journal of Display Technology 10, 1106-1109 (2014).
[27]J. C. Jones, “Bistable Liquid Crystal Displays,” University of Leeds, United Kingdom. (2016).
[28]梁書睿,向列型液晶摻雜二色性染料及梨子之特性及反應(國立中央大學光電科學與工程學系,2020).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明