參考文獻 |
[1] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., . . . Chang, S. Y.
(2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy
design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
[2] Mehta, A., & Sohn, Y. (2020). High Entropy and Sluggish Diffusion “Core” Effects in
Senary FCC Al–Co–Cr–Fe–Ni–Mn Alloys. ACS Combinatorial Science, 22(12), 757-767.
[3] Sarkar, A., Wang, Q., Schiele, A., Chellali, M. R., Bhattacharya, S. S., Wang, D., . . .
Breitung, B. (2019). High‐entropy oxides: fundamental aspects and electrochemical properties.
Advanced Materials, 31(26), 1806236.
[4] Oses, C., Toher, C., & Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews
Materials, 5(4), 295-309.
[5] Braun, J. L., Rost, C. M., Lim, M., Giri, A., Olson, D. H., Kotsonis, G. N., . . . Hopkins, P.
E. (2018). Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized
oxides. Advanced Materials, 30(51), 1805004.
[6] Gild, J., Samiee, M., Braun, J. L., Harrington, T., Vega, H., Hopkins, P. E., . . . Luo, J.
(2018). High-entropy fluorite oxides. Journal of the European Ceramic Society, 38(10), 3578-
3584.
[7] Chen, H., Lin, W., Zhang, Z., Jie, K., Mullins, D. R., Sang, X., . . . Hu, X. (2019).
Mechanochemical synthesis of high entropy oxide materials under ambient conditions:
Dispersion of catalysts via entropy maximization. ACS Materials Letters, 1(1), 83-88.
[8] Wang, D., Liu, Z., Du, S., Zhang, Y., Li, H., Xiao, Z., . . . Zou, Y. (2019). Low-temperature
synthesis of small-sized high-entropy oxides for water oxidation. Journal of Materials
Chemistry A, 7(42), 24211-24216.
[9] Yang, J. X., Dai, B.-H., Chiang, C.-Y., Chiu, I.-C., Pao, C.-W., Lu, S.-Y., . . . Yeh, J.-W.
(2021). Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions.
ACS nano, 15(7), 12324-12333.
[10] Cheng, B., Zhang, Z., & Liu, D. (2019). Dynamic Computation Offloading Based on Deep
Reinforcement Learning. Paper presented at the Mobimedia 2019: 12th EAI International
Conference on Mobile Multimedia Communications, Mobimedia 2019, 29th-30th June 2019,
Weihai, China.
43
[11] Sarkar, A., Eggert, B., Velasco, L., Mu, X., Lill, J., Ollefs, K., . . . Brand, R. A. (2020).
Role of intermediate 4 f states in tuning the band structure of high entropy oxides. APL
materials, 8(5), 051111.
[12] Mao, A., Xiang, H.-Z., Zhang, Z.-G., Kuramoto, K., Zhang, H., & Jia, Y. (2020). A new
class of spinel high-entropy oxides with controllable magnetic properties. Journal of
Magnetism and Magnetic Materials, 497, 165884.
[13] Witte, R., Sarkar, A., Kruk, R., Eggert, B., Brand, R. A., Wende, H., & Hahn, H. (2019).
High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal
perovskites. Physical Review Materials, 3(3), 034406.
[14] Zhang, J., Yan, J., Calder, S., Zheng, Q., McGuire, M. A., Abernathy, D. L., . . . Zheng, H.
(2019). Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of
Materials, 31(10), 3705-3711.
[15] Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., & Cui, Y. (2019). A high entropy oxide
(Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance. Journal of
Alloys and Compounds, 777, 767-774.
[16] Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., . . . Hahn, H. (2018).
High entropy oxides for reversible energy storage. Nature communications, 9(1), 1-9.
[17] Wang, Q., Sarkar, A., Li, Z., Lu, Y., Velasco, L., Bhattacharya, S. S., . . . Breitung, B.
(2019). High entropy oxides as anode material for Li-ion battery applications: A practical
approach. Electrochemistry Communications, 100, 121-125.
[18] Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. Z. (2014). Earth-abundant cocatalysts
for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 43(22),
7787-7812.
[19] Son, J.-H., Wang, J., & Casey, W. H. (2014). Structure, stability and photocatalytic H 2
production by Cr-, Mn-, Fe-, Co-, and Ni-substituted decaniobate clusters. Dalton Transactions,
43(48), 17928-17933.
[20] Zhong, S., Xi, Y., Wu, S., Liu, Q., Zhao, L., & Bai, S. (2020). Hybrid cocatalysts in
semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry
A, 8(30), 14863-14894.
[21] Tsai, K.-Y., Tsai, M.-H., & Yeh, J.-W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni
high-entropy alloys. Acta Materialia, 61(13), 4887-4897.
[22] Zhou, D., Chen, Z., Ehara, K., Nitsu, K., Tanaka, K., & Inui, H. (2021). Effects of
annealing on hardness, yield strength and dislocation structure in single crystals of the
equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy. Scripta Materialia, 191, 173-178.
44
[23] Restaino, S. M., & White, I. M. (2019). A critical review of flexible and porous SERS
sensors for analytical chemistry at the point-of-sample. Analytica chimica acta, 1060, 17-29.
[24] Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., . . . Liu, Z. (2010). Can graphene
be used as a substrate for Raman enhancement? Nano letters, 10(2), 553-561.
[25] Botti, S., Mezi, L., Rufoloni, A., Vannozzi, A., Bollanti, S., & Flora, F. (2019). Extreme
Ultraviolet Generation of Localized Defects in Single-Layer Graphene: Raman Mapping,
Atomic Force Microscopy, and High-Resolution Scanning Electron Microscopy Analysis. ACS
Applied Electronic Materials, 1(12), 2560-2565.
[26] Liu, Y.-J., Chu, H. Y., & Zhao, Y.-P. (2010). Silver nanorod array substrates fabricated by
oblique angle deposition: morphological, optical, and SERS characterizations. The Journal of
Physical Chemistry C, 114(18), 8176-8183.
[27] Poinern, G. E. J., Ali, N., & Fawcett, D. (2011). Progress in nano-engineered anodic
aluminum oxide membrane development. Materials, 4(3), 487-526.
[28] Velleman, L., Bruneel, J.-L., Guillaume, F., Losic, D., & Shapter, J. G. (2011). Raman
spectroscopy probing of self-assembled monolayers inside the pores of gold nanotube
membranes. Physical Chemistry Chemical Physics, 13(43), 19587-19593.
[29] Shan, D., Huang, L., Li, X., Zhang, W., Wang, J., Cheng, L., . . . Zhang, Y. (2014). Surface
plasmon resonance and interference coenhanced SERS substrate of AAO/Al-based Ag
nanostructure arrays. The Journal of Physical Chemistry C, 118(41), 23930-23936.
[30] Zhang, R.-Z., & Reece, M. J. (2019). Review of high entropy ceramics: design, synthesis,
structure and properties. Journal of Materials Chemistry A, 7(39), 22148-22162.
[31] Sarkar, A., Breitung, B., & Hahn, H. (2020). High entropy oxides: the role of entropy,
enthalpy and synergy. Scripta Materialia, 187, 43-48.
[32] Sarkar, A., Djenadic, R., Wang, D., Hein, C., Kautenburger, R., Clemens, O., & Hahn, H.
(2018). Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal
of the European Ceramic Society, 38(5), 2318-2327.
[33] Sarkar, A., Loho, C., Velasco, L., Thomas, T., Bhattacharya, S. S., Hahn, H., & Djenadic,
R. (2017). Multicomponent equiatomic rare earth oxides with a narrow band gap and associated
praseodymium multivalency. Dalton Transactions, 46(36), 12167-12176.
[34] Osenciat, N., Bérardan, D., Dragoe, D., Leridon, B., Holé, S., Meena, A. K., . . . Dragoe,
N. (2019). Charge compensation mechanisms in Li ‐substituted high‐entropy oxides and
influence on Li superionic conductivity. Journal of the American Ceramic Society, 102(10),
6156-6162.
45
[35] Bérardan, D., Franger, S., Meena, A., & Dragoe, N. (2016). Room temperature lithium
superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4(24), 9536-
9541.
[36] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P.
(2014). Microstructures and properties of high-entropy alloys. Progress in materials science,
61, 1-93.
[37] Hsieh, M.-H., Tsai, M.-H., Shen, W.-J., & Yeh, J.-W. (2013). Structure and properties of
two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 221,
118-123.
[38] Yeh, J.-W., Chang, S.-Y., Hong, Y.-D., Chen, S.-K., & Lin, S.-J. (2007). Anomalous
decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multiprincipal elements. Materials chemistry and physics, 103(1), 41-46.
[39] Zhou, Y., Zhang, Y., Wang, Y., & Chen, G. (2007). Solid solution alloys of Al Co Cr Fe
Ni Ti x with excellent room-temperature mechanical properties. Applied physics letters, 90(18),
181904.
[40] Wang, X., Zhang, Y., Qiao, Y., & Chen, G. (2007). Novel microstructure and properties
of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 15(3), 357-362.
[41] Singh, S., Wanderka, N., Murty, B., Glatzel, U., & Banhart, J. (2011). Decomposition in
multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 59(1), 182-190.
[42] Castle, E., Csanádi, T., Grasso, S., Dusza, J., & Reece, M. (2018). Processing and
properties of high-entropy ultra-high temperature carbides. Scientific reports, 8(1), 1-12.
[43] Ameta, R., & Ameta, S. C. (2016). Photocatalysis: principles and applications: Crc Press.
[44] Lianos, P. (2011). Production of electricity and hydrogen by photocatalytic degradation of
organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a
re-emerging research field. Journal of Hazardous Materials, 185(2-3), 575-590.
[45] Iwasaki, M., Hara, M., Kawada, H., Tada, H., & Ito, S. (2000). Cobalt ion-doped TiO2
photocatalyst response to visible light. Journal of Colloid and Interface Science, 224(1), 202-
204.
[46] Ohno, T., Mitsui, T., & Matsumura, M. (2003). Photocatalytic activity of S-doped TiO2
photocatalyst under visible light. Chemistry letters, 32(4), 364-365.
[47] Wang, X., Meng, S., Zhang, X., Wang, H., Zhong, W., & Du, Q. (2007). Multi-type carbon
doping of TiO2 photocatalyst. Chemical Physics Letters, 444(4-6), 292-296.
[48] Ding, B., Kim, H., Kim, C., Khil, M., & Park, S. (2003). Morphology and crystalline phase
study of electrospun TiO2–SiO2 nanofibres. Nanotechnology, 14(5), 532.
46
[49] Zhang, X., Zhang, T., Ng, J., & Sun, D. D. (2009). High‐performance multifunctional
TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment.
Advanced Functional Materials, 19(23), 3731-3736.
[50] Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., & Fujishima, A. (2008). Efficient
photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays.
Environmental science & technology, 42(22), 8547-8551.
[51] Zhang, X., & Lei, L. (2008). Effect of preparation methods on the structure and catalytic
performance of TiO2/AC photocatalysts. Journal of Hazardous Materials, 153(1-2), 827-833.
[52] Hung, W.-H., Chien, T.-M., Lo, A.-Y., Tseng, C.-M., & Li, D. (2014). Spatially
controllable plasmon enhanced water splitting photocurrent in Au/TiO 2–Fe 2 O 3 cocatalyst
system. RSC advances, 4(86), 45710-45714.
[53] Hung, W.-H., Chien, T.-M., & Tseng, C.-M. (2014). Enhanced photocatalytic water
splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation. The Journal of
Physical Chemistry C, 118(24), 12676-12681.
[54] Hung, W.-H., Teng, Y.-J., Tseng, C.-M., & Nguyen, H. T. T. (2021). Enhanced Patterned
Cocatalyst TiO 2/Fe 2 O 3 Photoanodes for Water-Splitting. Nanoscale research letters, 16(1),
1-7.
[55] Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., & Van Duyne, R. P. (2012). SERS:
Materials, applications, and the future. Materials today, 15(1-2), 16-25.
[56] Xu, W., Mao, N., & Zhang, J. (2013). Graphene: a platform for surface‐enhanced Raman
spectroscopy. Small, 9(8), 1206-1224.
[57] Demirel, G., Usta, H., Yilmaz, M., Celik, M., Alidagi, H. A., & Buyukserin, F. (2018).
Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic
semiconductors as SERS platforms. Journal of Materials Chemistry C, 6(20), 5314-5335.
[58] Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular
chemistry, quantum-size-related properties, and applications toward biology, catalysis, and
nanotechnology. Chemical reviews, 104(1), 293-346.
[59] Lee, S. Y., Hung, L., Lang, G. S., Cornett, J. E., Mayergoyz, I. D., & Rabin, O. (2010).
Dispersion in the SERS enhancement with silver nanocube dimers. ACS nano, 4(10), 5763-
5772.
[60] McLellan, J. M., Li, Z.-Y., Siekkinen, A. R., & Xia, Y. (2007). The SERS activity of a
supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano
letters, 7(4), 1013-1017.
47
[61] Alvarez-Puebla, R. A., Zubarev, E. R., Kotov, N. A., & Liz-Marzán, L. M. (2012). Selfassembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 7(1), 6-9.
[62] Shanmukh, S., Jones, L., Driskell, J., Zhao, Y., Dluhy, R., & Tripp, R. A. (2006). Rapid
and sensitive detection of respiratory virus molecular signatures using a silver nanorod array
SERS substrate. Nano letters, 6(11), 2630-2636.
[63] Wang, Y., Lee, K., & Irudayaraj, J. (2010). Silver nanosphere SERS probes for sensitive
identification of pathogens. The Journal of Physical Chemistry C, 114(39), 16122-16128.
[64] Litti, L., & Meneghetti, M. (2019). Predictions on the SERS enhancement factor of gold
nanosphere aggregate samples. Physical Chemistry Chemical Physics, 21(28), 15515-15522.
[65] Scarabelli, L., Coronado-Puchau, M., Giner-Casares, J. J., Langer, J., & Liz-Marzan, L. M.
(2014). Monodisperse gold nanotriangles: size control, large-scale self-assembly, and
performance in surface-enhanced Raman scattering. ACS nano, 8(6), 5833-5842.
[66] Geng, X., Leng, W., Carter, N. A., Vikesland, P. J., & Grove, T. Z. (2016). Protein-aided
formation of triangular silver nanoprisms with enhanced SERS performance. Journal of
Materials Chemistry B, 4(23), 4182-4190.
[67] Indrasekara, A. D. S., Meyers, S., Shubeita, S., Feldman, L., Gustafsson, T., & Fabris, L.
(2014). Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime.
Nanoscale, 6(15), 8891-8899.
[68] Ma, W., Sun, M., Xu, L., Wang, L., Kuang, H., & Xu, C. (2013). A SERS active gold
nanostar dimer for mercury ion detection. Chemical communications, 49(44), 4989-4991.
[69] He, S., Chua, J., Tan, E. K. M., & Kah, J. C. Y. (2017). Optimizing the SERS enhancement
of a facile gold nanostar immobilized paper-based SERS substrate. RSC advances, 7(27),
16264-16272.
[70] Xu, Y., Kutsanedzie, F. Y., Hassan, M. M., Zhu, J., Li, H., & Chen, Q. (2020).
Functionalized hollow Au@ Ag nanoflower SERS matrix for pesticide sensing in food. Sensors
and Actuators B: Chemical, 324, 128718.
[71] Xie, J., Zhang, Q., Lee, J. Y., & Wang, D. I. (2008). The synthesis of SERS-active gold
nanoflower tags for in vivo applications. ACS nano, 2(12), 2473-2480.
[72] Zhao, Y., Yang, X., Li, H., Luo, Y., Yu, R., Zhang, L., . . . Song, Q. (2015). Au nanoflower–
Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection. Chemical
communications, 51(95), 16908-16911.
[73] Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R., & Tian, Z.-Q. (2017). Core–shell
nanoparticle-enhanced Raman spectroscopy. Chemical reviews, 117(7), 5002-5069.
48
[74] Lim, D.-K., Jeon, K.-S., Kim, H. M., Nam, J.-M., & Suh, Y. D. (2010). Nanogapengineerable Raman-active nanodumbbells for single-molecule detection. Nature materials,
9(1), 60-67.
[75] Lim, D.-K., Jeon, K.-S., Hwang, J.-H., Kim, H., Kwon, S., Suh, Y. D., & Nam, J.-M.
(2011). Highly uniform and reproducible surface-enhanced Raman scattering from DNAtailorable nanoparticles with 1-nm interior gap. Nature nanotechnology, 6(7), 452-460.
[76] Tyutyunnik, V. M. (2021). Graphene breakthrough into future technology: the 2010 Nobel
Prize in Physics Laureate Sir Konstantin Sergeevich Novoselov. Journal of Advanced Materials
and Technologies, 6(1), 6-9.
[77] Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010).
Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters, 10(3), 751-
758.
[78] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D.-e., Zhang, Y., Dubonos, S. V., . . .
Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696),
666-669.
[79] Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., & Zhang, Z. (2010).
Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and
applications in SERS and catalysis. Nanoscale, 2(12), 2733-2738.
[80] Yang, L., Lee, J.-H., Rathnam, C., Hou, Y., Choi, J.-W., & Lee, K.-B. (2019). Dualenhanced Raman scattering-based characterization of stem cell differentiation using grapheneplasmonic hybrid nanoarray. Nano letters, 19(11), 8138-8148.
[81] Liang, X., Liang, B., Pan, Z., Lang, X., Zhang, Y., Wang, G., . . . Guo, L. (2015). Tuning
plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids.
Nanoscale, 7(47), 20188-20196.
[82] Bastús, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth
synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald
ripening. Langmuir, 27(17), 11098-11105.
[83] Wang, S., Yu, G., Gong, J., Li, Q., Xu, H., Zhu, D., & Zhu, Z. (2006). Large-area
fabrication of periodic Fe nanorings with controllable aspect ratios in porous alumina templates.
Nanotechnology, 17(6), 1594.
[84] Dąbrowa, J., Stygar, M., Mikuła, A., Knapik, A., Mroczka, K., Tejchman, W., . . . Martin,
M. (2018). Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide
characterized by spinel structure. Materials Letters, 216, 32-36.
49
[85] Mao, A., Xie, H.-X., Xiang, H.-Z., Zhang, Z.-G., Zhang, H., & Ran, S. (2020). A novel
six-component spinel-structure high-entropy oxide with ferrimagnetic property. Journal of
Magnetism and Magnetic Materials, 503, 166594.
[86] Dojcinovic, M. P., Vasiljevic, Z. Z., Pavlovic, V. P., Barisic, D., Pajic, D., Tadic, N. B., &
Nikolic, M. V. (2021). Mixed Mg–Co spinel ferrites: Structure, morphology, magnetic and
photocatalytic properties. Journal of Alloys and Compounds, 855, 157429.
[87] Srinivas, M. (2021). Superior photocatalytic activity of Mn-doped CoFe2O4 under visible
light irradiation: Exploration of hopping and polaron formation in the spinel structure.
Materials Science and Engineering: B, 270, 115222.
[88] Sutka, A., Millers, M., Vanags, M., Joost, U., Maiorov, M., Kisand, V., . . . Juhnevica, I.
(2015). Comparison of photocatalytic activity for different co-precipitated spinel ferrites.
Research on Chemical Intermediates, 41(12), 9439-9449.
[89] Che, Y., Lu, B., Qi, Q., Chang, H., Zhai, J., Wang, K., & Liu, Z. (2018). Bio-inspired Zscheme gC 3 N 4/Ag 2 CrO 4 for efficient visible-light photocatalytic hydrogen generation.
Scientific reports, 8(1), 1-12.
[90] Ghicov, A., Tsuchiya, H., Macak, J. M., & Schmuki, P. (2006). Annealing effects on the
photoresponse of TiO2 nanotubes. physica status solidi (a), 203(4), R28-R30.
[91] Beams, R., Cançado, L. G., & Novotny, L. (2015). Raman characterization of defects and
dopants in graphene. Journal of Physics: Condensed Matter, 27(8), 083002.
[92] López-Díaz, D., Lopez Holgado, M., García-Fierro, J. L., & Velázquez, M. M. (2017).
Evolution of the Raman spectrum with the chemical composition of graphene oxide. The
Journal of Physical Chemistry C, 121(37), 20489-20497.
[93] Gao, G., Liu, D., Tang, S., Huang, C., He, M., Guo, Y., . . . Gao, B. (2016). Heat-initiated
chemical functionalization of graphene. Scientific reports, 6(1), 1-8. |