博碩士論文 108226061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.141.47.79
姓名 林建安(Chien- An Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面聲波對膽固醇液晶結構之影響
(Effect of surface acoustic waves onto the structures of cholesteric liquid crystals)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-3-23以後開放)
摘要(中) 在液晶顯示器及液晶元件的應用中,控制液晶分子排列的方式在學術研究上以電控、光控及熱控為主,而藉由表面聲波改變液晶排列的研究則相對稀少許多,因此本論文的研究將嘗試藉由表面聲波改變液晶分子的排列方式,研究主題主要研究膽固醇液晶分子排列受表面聲波影響產生的改變,第一部分藉由表面聲波致膽固醇液晶分子排列自焦錐態(Focal conic textures)切換至平面態(Planar textures),實驗中以向列型液晶(E7)及手性分子(CB15)混和為膽固醇液晶,當使用壓電材料搭配叉指電極(Interdigital transducers, IDTs)產生表面聲波輸入至液晶盒時會同時產生熱能,此時膽固醇液晶分子同時受到表面聲波及熱的影響而出現排列擾動的現象。表面聲波進入液晶盒會形成聲流場,實驗結果證明若聲流場在液晶盒中持續影響一段時間後關閉表面聲波,液晶分子會自起始的焦錐態切換為平面態結構,如將持續時間拉長且在表面聲波強度足夠下,液晶分子會因溫度上升而相變至澄清態,實驗中在未控溫下藉由叉指電極輸出不同強度的表面聲波並維持不同的持續時間,將顯微鏡下觀測圖及其頻譜圖記錄下來並做討論,表面聲波的強度與液晶重新排列的速率呈現正相關。第二部分的研究使用與第一部分相同的膽固醇液晶注入上下基板皆為玻璃基板的液晶盒,將其置於控溫器中觀察並記錄溫度的變化對膽固醇液晶分子排列的影響,並將第二部分和第一部分的實驗做比較,由實驗結果可證實溫度並非造成焦錐態切換成平面態的主要原因。第三部分的研究使用與第一部份實驗相同的液晶盒,利用溫控器控制液晶盒溫度以降低生成表面聲波時產生的熱效應,探討表面聲波對膽固醇液晶排列結構的影響,在控溫下液晶仍可透過表面聲波自焦錐態切換為平面態。
摘要(英) Due to the unique optical properties, liquid crystals (LCs) have been widely used in various optical fields and electronics. There are lots of considerable studies of the changes of LC arrangements through optical, electrical, and thermal manners. However, the researches in changing LC arrangements by surface acoustic waves (SAWs) are relatively rare. Therefore, the changes of LC arrangement by feeding SAWs into LCs will be studied experimentally in this thesis. The thesis concentrates on the changes of cholesteric LCs (CLCs) arrangement by the applications of SAWs. The CLCs used herein are composed of nematic LC (E7) and chiral dopant (CB15). The experiments are divided into three parts. In the first part, the changes of CLCs textures from focal conic textures to planar ones by feeding SAWs through substrates made by LiNbO_3 at room temperature without temperature control are studied. However, heat is generating when the substrates is generating SAWs by the applications of electric field onto the IDTs. CLC arrangements are affected by the generated heat and SAWs. Supposing CLCs are initially in focal conic textures, the experimental results show that the acoustic streaming generated by SAWs makes the CLCs form a CLC flow. With the application of SAWs onto CLCs for a suitable duration, the CLCs can be transformed from focal conic to planar textures. To keep the obtained planar textures, the electric filed applied onto the IDTs should be switched off. However, the CLCs will become isotropic state due to thermal effect if the duration of the application of SAWs is long enough. In the experiments, SAWs, generated by the application of electric filed, including 15.3, 23.8, and 38 Vpp@20 MHz, onto IDTs for different durations at room temperature without temperature control are used. The observations under a microscopy and the transmission spectra are recorded for discussion. Experimentally, the strength of SAWs is positivity correlated with the rate of LCs rearrangement. In the second part, the CLCs consistent with that used in the first part are injected into a LC cell whose substrates are assembled by two glass substrates, and then, the effects of thermal onto the arrangement of CLC molecules are examined with temperature control by a hot stage. Refer to the experimental results, we confirm that the switch of CLC textures from focal conic textures to the planar ones is about independent of temperature. In the finally part, the same CLCs are injected into a LC cell, consistent with that adopted in the first part. The effect of SAWs onto the CLC arrangement is discussed. A temperature controller is adopted to minimize the influence of SAWs-induced heat onto CLC arrangement. According to the experimental results, the CLCs with temperature control can still be switched from focal conic textures to planar ones through the applications of SAWs.
關鍵字(中) ★ 膽固醇液晶
★ 表面聲波
★ 聲流場
關鍵字(英) ★ cholesteric liquid crystals
★ surface acoustic wave
★ acoustic streaming
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
§1-1前言 1
§1-2研究動機 1
§1-3 文獻回顧 2
§1-4論文架構 5
第二章 液晶簡介 7
§2-1 液晶歷史 7
§2-2 液晶簡介 7
§2-3 液晶分類 8
§2-3-1圓盤狀(Disk-like)液晶 9
§2-3-2棒狀(Rod-like)液晶 10
§2-4膽固醇液晶 14
§2-4-1膽固醇液晶排列結構 16
§2-4-2膽固醇液晶排列與外加電場關係 18
§2-4-3影響膽固醇液晶螺距之因素 19
§2-4-4溫度對膽固醇液晶螺距的影響 21
§2-4-5膽固醇液晶的光學特性 21
§2-5液晶特性 22
§2-5-1光學異向性[18] 22
§2-5-2介電異向性[19] 25
§2-5-3溫度對液晶折射率的影響[20] 27
§2-5-4連續彈性體理論[21] 28
第三章 表面聲波簡介 30
§3-1表面聲波歷史 30
§3-2表面聲波簡介[30-31] 31
§3-2-1雷利波感測器 31
§3-2-2彎曲平板波感測器 32
§3-2-3表面橫向波感測器 32
§3-2-4拉福波感測器 33
§3-3壓電效應[32] 34
§3-4壓電材料 35
§3-5表面聲波元件設計與規格 36
§3-6表面聲波及洩漏表面波 39
第四章 實驗方法與過程 41
§4-1 材料介紹 41
§4-1-1 正型向列型液晶E7 41
§4-1-2手性分子CB15 42
§4-2 實驗樣品製備 42
§4-2-1 ITO基板裁切及清洗 42
§4-2-2鈮酸鋰基板裁切及清洗 42
§4-2-3鈮酸鋰基板表面電極製備 43
§4-2-5液晶盒製備 43
§4-2-6液晶盒厚度量測 44
§4-3 實驗架設 46
第五章 實驗結果與討論 48
§5-1表面聲波引致膽固醇液晶排列之切換 48
§5-1-1對膽固醇液晶施加表面聲波(IDT: 15.3 Vpp@20 MHz) 48
§5-1-2對膽固醇液晶施加表面聲波(IDT: 23.8 Vpp@20 MHz) 50
§5-1-3對膽固醇液晶施加表面聲波(IDT: 38 Vpp@20 MHz) 52
§5-1-4於穿透軸相互正交的偏振片下觀察膽固醇液晶受表面聲波(IDT: 38 Vpp@20 MHz)之影響 59
§5-2溫度對膽固醇液晶結構的影響 60
§5-3定溫下表面聲波引致膽固醇液晶排列的影響 63
§5-3-1在10°C下施加表面聲波(IDT: 38 Vpp@20 MHz)引致膽固醇液晶排列的影響 64
§5-3-2 25°C下施加表面聲波(IDT: 38 Vpp@20 MHz)引致膽固醇液晶排列的影響 67
第六章 結論與未來展望 71
§6-1結論 71
§6-1-1表面聲波引致膽固醇液晶結構之切換 71
§6-1-2溫度對膽固醇液晶結構的影響 71
§6-1-3定溫下表面聲波引致膽固醇液晶排列的影響 72
§6-2未來展望 73
參考文獻 74
參考文獻 [1]Y. J. Liu and X. Ding, “Surface acoustic wave driven light shutters using polymr-dispersed liquid crystals,” Adv. Mater. 23, 1656-1659 (2011).
[2]K. Miyano and Y. R. Shen, “Excitation of stripe domain patterns by propagating acoustic waves in an oriented nematic film,” Phys. Rev. 15 (1997).
[3]H. Moritake, T. Seike, and K. Toda, “Acousto-optic effects of nematic liquid crystals induced by elastic wave propagating in glass substrate,” Jpn. J. Appl. Phys. 38, 3076-3079 (1999).
[4]E. Kozhevnikov, “Deformation of a homeotropic nematic liquid crystal layer at oblique incidence of an ultrasonic wave,” Acoust Phys. 51, 686-697 (2005).
[5]J. V. Selinger and M. S. Spector, “Acoustic realignment of nematic liquid crystals,” Phys. Rev. 66, 051708 (2002).
[6]K. Toda and M. Inoue, “Analysis of Acoustic Streaming in Nematic Liquid-Crystal Cell,” Jpn. J. Appl. Phys. 44, 316-323 (2005).
[7]R. Ozaki and T, Shinpo, “Reorientation of Cholesteric Liquid Crystal Molecules Using Acoustic Streaming,” Jpn. J. Appl. Phys. 46, L489 (2007).
[8]F.Reinizer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
[9]O. Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[10]D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Ltd. (2015).
[11]L. M. Blinov, “Structure and Properties of Liquid Crystals,” Springer, Dordrecht (2011).
[12]松本正一、角田市良 (劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版(1996).
[13]S. J. Elston and N. J. Mottram, “Order parameter variation in smectic liquid crystals,” Adv. Chem. Phys. 113, 317-339 (2007).
[14]H. S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer, New York (2001).
[15]H. Keller, “History of liquid crystals,” Mol. Cryst. Liq.Cryst. 21, 1 (1973).
[16]G. W. Gray, “Thermotropic liquid crystals,” Wiley, New York (1987).
[17]J. Geng and C. Dong, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006).
[18]A. Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons (1984).
[19]L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer, New York (1994).
[20]P. G. de. Gennes and J. Prost, “The Physics of Liquid Crystal,” 2^nded. Oxford University Press, New York (1993).
[21]S. V Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, “Liquid Crystals: Viscous and Elastic Properties in Theory and Applications,” Wiley (2009).
[22]L. Rayleigh, “On wave propagation along the plane surface of an elastic solid,” Proc. London Math. Soc. 17, 4-11 (1885).
[23]R. M. White and F.W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett. 7. 314-316 (1965).
[24]R. H. Tancrell, M. B. Schulz, H. H. Barrett, L. Davies and M. G. Holland, “Dispersive delay lines using ultrasonics surface waves,” Proc. IEEE. 57, 1211-1213 (1969).
[25]D. Chauvin, E. Coussot and E. Dieulesaint, “Acoustic-surface-wave television filters,” Electron. Lett. 7, 491-492 (1971).
[26]“Special issue on surface acoustic wave devices and application,” Proc. IEEE. 64, 577-832 (1976).
[27]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J Shaw, “Design of surface wave delay lines with interdigital,” IEEE Trans. MTT-17, 865-873 (1969).
[28]M. Lewis, “Triple-transit suppression in surface-acoustic-wave devices,” Electron Lett. 8, 553-584 (1972).
[29]M. Lewis, “SAW filters employing interdigitated interdigital transducers, IIDT,” IEEE int. Ultrason. Symp. pp.12-17 (1982).
[30]楊啟榮、李清鋒、施建富,“表面聲波生化感測器原理與應用技術” 科儀新知第二十六卷第一期(2004)
[31]高國陞、陳英忠,“表面聲波元件之頻率及溫度特性之研究”國立中山大學,電機工程學系(2004)
[32]簡俊謙、高曜煌,“表面聲波元件之設計及其在寬頻震盪器之應用”國立交通大學,電信工程研究所(2000)
[33]C. S. Hartmann, D. T. Bell, Jr., and R. C. Rosenfeild, “Impulse model design of acoustic wave filter,” IEEE Trans. On Microwave Theory and Techniques. 21, 162-175 (1973).
[34]陳言愈,電控及光控膽固醇液晶光柵之研究(光電科學與工程研究所,碩士論文,2011)
[35]A. M. Gonzalez and A. Garcia,” Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance,” Materials, 9. 27 (2016).
[36]K. H. Kim and D. H. Song, “Fast switching of long-pitch cholesteric liquid crystal device,” Opt. Express 19, 11 (2011).
[37]黃康哲、尹慶中,“聲導波操控向列型液晶的排列之研究”國立交通大學,機械工程學系(2009)
指導教授 鄭恪亭(Ko- Ting Cheng) 審核日期 2022-5-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明