博碩士論文 108329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:141 、訪客IP:18.219.63.90
姓名 謝東佑(Tung-Yu Hsieh)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究
(Fabrication of Ni-W alloying micro-pillars & micro-helices by MAGE in pyrophosphate and their HER in 1.0 M KOH solution)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中使用微陽極導引電鍍法(Microanode-guided electroplating, MAGE)來製作鎳鎢合金三維微結構。使用線徑125 μm之白金線作為陽極,以線徑為0.643 mm之銅導線作為陰極,於焦磷酸浴中改變析鍍偏壓(5.6 V~6.2 V)與間距(50 μm~80 μm)等條件進行電鍍,希望製作出含鎳、鎢兩金屬元素之微柱與微螺旋結構。再透過SEM觀察表面形貌、EDS分析化學組成、XRD分析晶體結構及COMSOL模擬電場分布,尋求最佳的鎳鎢合金微柱之電鍍條件。再進一步使用循環伏安法、計時電位法、線性極化分析法來探討鎳鎢微柱在鹼性水溶液中的產氫表現。
結果顯示: 析鍍偏壓為6.0 V和間距為60 μm的情況下進行鎳鎢合金之電鍍時,最大的電場強度為118233 V/m,有最高的鎢含量42.3±0.8 at.%。在1.0 M KOH溶液中,也具有最佳的產氫效能,陰極峰值電流密度會有最大的-593.63 mA/cm2,且有最低的產氫起始過電位-0.2 V,在-300 mA/cm2下有最小的電位-0.25 V,最小的Tafel slope為75 mV/dec,最大的交換電流密度值為0.803 mA/cm2。
摘要(英) Micro-anode guided electrodeposition (MAGE) process was used to fabricate three-dimensional microstructures of Ni-W alloys in this study.Use platinum wire with a wire diameter of 125 μm as the anode, and a copper wire with a wire diameter of 0.643 mm as the cathode. Change the bias voltage (5.6 V~6.2 V) and spacing (50 μm~80 μm) in a pyrophosphate bath. The goal is to produce micro-pillars and micro-helical structures containing two metal elements of nickel and tungsten. Then observe the surface morphology through SEM, EDS analysis of chemical composition, XRD analysis of crystal structure and COMSOL simulated electric field distribution to find the best nickel-tungsten alloy micro-pillar plating conditions. Furthermore, cyclic voltammetry, chronopotentiometry, and linear polarization analysis were used to explore the hydrogen production performance of nickel-tungsten micro-columns in alkaline solutions.
The results show that when nickel-tungsten alloy electroplating is performed with a bias voltage of 6.0 V and a spacing of 60 μm, the maximum electric field strength is 118233 V/m, and the highest tungsten content is 42.3±0.8 at.%. In 1.0 M KOH solution, it also has the best hydrogen production efficiency. The peak current density of the cathode will have the largest -593.63 mA/cm2, and the lowest hydrogen production initial overpotential -0.2 V, at -300 mA/cm2 There is the smallest potential -0.25 V, the smallest Tafel slope is 75 mV/dec, and the largest exchange current density is 0.803 mA/cm2.
關鍵字(中) ★ 微電鍍
★ 微螺旋
★ 焦磷酸
★ 鎳鎢合金
★ 產氫
關鍵字(英) ★ Micro-anode guided electroplating
★ Micro-helix
★ Pyrophosphate
★ Nickle-Tungsten alloy
★ Hydroden Evolution Recation
論文目次 目錄
摘要 i
Abstract vi
目錄 viii
表目錄 xv
圖目錄 xix
第一章、 前言 1
1-1 研究背景 1
1-2 研究目的與動機 2
第二章、 文獻回顧與基礎理論 4
2-1 微電鍍之原理與技術發展 4
2-1-1 電鍍原理 4
2-1-2 電鍍法拉第效率 5
2-1-3 合金電鍍 6
2-1-4 局部電化學電鍍製程之發展 8
2-1-5 奈微米材料實驗室微電鍍製程之發展 9
2-1-6 COMSOL電場模擬軟體之有限元素分析 11
2-1-7 奈米壓痕測試材料之硬度與楊氏模數 12
2-1-8 微米柱壓縮測試 13
2-2 產氫技術之發展概況 14
2-2-1 電解水產氫機制 16
2-2-2 非貴金屬陰極材料之開發關鍵 18
2-2-3 鎳基合金用於水電解產氫陰極之相關研究 20
2-2-3 (A) Ni-Zn合金 20
2-2-3 (B) Ni-S合金 21
2-2-3 (C) Ni-Co合金 23
2-2-3 (D) Ni-Mo合金 24
2-2-3 (E) Ni-W合金 26
第三章、 實驗方法 28
3-1 實驗流程 28
3-2 實驗設備 29
3-3 陰陽極製作 30
3-4 鍍液組成 30
3-5 微陽極導引電鍍法 31
3-5-1 單軸式 31
3-5-2 四軸式 31
3-6 掃瞄式電子顯微鏡/能量色散X射線譜 32
3-7 X光繞射儀 32
3-8 機械性質量測 33
3-9 電場模擬 33
3-10 電化學測試 34
3-10-1 析鍍極化曲線 34
3-10-2 循環伏安法 34
3-10-3 計時電位法 35
3-10-4 產氫極化曲線 35
3-10-5 定電壓收集氫氣法 36
3-10-6 電化學阻抗分析圖譜 36
第四章、 結果 37
4-1 鎳鎢合金微柱析鍍參數之影響 37
4-1-1 鎳鎢合金微柱之表面形貌分析 37
4-1-2 鎳鎢合金微柱之COMSOL模擬分析 39
4-1-3 鎳鎢合金微柱之析鍍電流 40
4-1-4 鎳鎢合金微柱之電鍍極化曲線 41
4-1-5 鎳鎢合金微柱之電化學阻抗圖譜分析 41
4-1-6 鎳鎢合金微柱之析鍍速率 42
4-1-7 鎳鎢合金微柱之化學組成分析 43
4-1-8 鎳鎢合金微柱之晶體結構分析 44
4-1-9 鎳鎢合金微柱之法拉第效率分析 45
4-1-10 鎳鎢合金微柱之機械性質分析 46
4-2 鎳鎢合金微螺旋析鍍參數之影響 48
4-2-1 鎳鎢合金微螺旋析鍍之螺旋直徑 48
4-2-2 鎳鎢合金微螺旋析鍍之螺旋間距 48
4-2-3 鎳鎢合金微螺旋析鍍之線徑 49
4-2-4 鎳鎢合金微螺旋結構之析氫效能 51
4-3 鎳鎢合金微柱之析氫反應 51
4-3-1 循環伏安法 52
4-3-2 計時電位法 53
4-3-3 產氫極化曲線 55
4-3-4 定電壓收集氫氣法 56
第五章、 討論 58
5-1 析鍍參數對析鍍鎳鎢微柱之探討 58
5-1-1 析鍍參數對COMSOL電場模擬之探討 58
5-1-2 析鍍參數對表面形貌之探討 58
5-1-3 析鍍參數對析鍍電流之探討 61
5-1-4 析鍍參數對電鍍極化之探討 61
5-1-5 析鍍參數對電化學阻抗圖譜之分析探討 63
5-1-6 析鍍參數對析鍍速率之探討 63
5-1-7 析鍍參數對微柱成分之探討 65
5-1-8 析鍍參數對晶體結構之探討 66
5-1-9 析鍍參數對析鍍法拉第效率之探討 67
5-1-10 析鍍參數對微柱機械性質之探討 68
5-2 鎳鎢合金微螺旋結構探討 68
5-2-1 析鍍參數對鎳鎢合金微螺旋直徑之探討 69
5-2-2 析鍍參數對鎳鎢合金微螺旋螺距之探討 69
5-2-3 析鍍參數對鎳鎢合金微螺旋線徑之探討 70
5-2-4 析鍍參數對鎳鎢合金微螺旋結構析氫效能之探討 71
5-3 鎳鎢微柱析氫反應之探討 72
5-3-1 循環伏安法之探討 73
5-3-2 計時電位法之探討 74
5-3-3 產氫極化之探討 75
5-3-4 定電壓排水集氣法之探討 77
第六章、 結論與未來展望 79
參考文獻 81
參考文獻 參考文獻


1. Metikoš-Huković, M., Grubač, Z., Radić, N., and Tonejc, A., “Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution”. Journal of Molecular Catalysis A: Chemical, 2006. 249(1-2), p. 172-180.
2. Krishnan Rajeshwar, R.M. and Licht, S., “Solar Hydrogen Generation Toward a Renewable Energy Future”. 2008.
3. Khan, M.A., Zhao, H., Zou, W., Chen, Z., Cao, W., Fang, J., Xu, J., Zhang, L., and Zhang, J., “Recent progresses in electrocatalysts for water electrolysis”. Electrochemical Energy Reviews, 2018. 1(4), p. 483-530.
4. Cruz, J., Baglio, V., Siracusano, S., Antonucci, V., Aricò, A., Ornelas, R., Ortiz-Frade, L., Osorio-Monreal, G., Durón-Torres, S., and Arriaga, L., “Preparation and characterization of RuO2 catalysts for oxygen evolution in a solid polymer electrolyte”. Int J Electrochem Sci, 2011. 6(12), p. 6607-6619.
5. Lai, J. and Guo, S., “Design of Ultrathin Pt‐Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis”. Small, 2017. 13(48), p. 1702156.
6. Lu, S. and Zhuang, Z., “Electrocatalysts for hydrogen oxidation and evolution reactions”. Science China Materials, 2016. 59(3), p. 217-238.
7. Stephens, I.E. and Chorkendorff, I., “Minimizing the Use of Platinum in Hydrogen‐Evolving Electrodes”. Angewandte Chemie International Edition, 2011. 50(7), p. 1476-1477.
8. Subbaraman, R., Tripkovic, D., Strmcnik, D., Chang, K.-C., Uchimura, M., Paulikas, A.P., Stamenkovic, V., and Markovic, N.M., “Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH) 2-Pt interfaces”. Science, 2011. 334(6060), p. 1256-1260.
9. Vernickaite, E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”. Electrochimica Acta, 2019. 318, p. 597-606.
10. O’Brien, T.F., Bommaraju, T.V., and Hine, F., ”Overview of the chlor-alkali industry”, Handbook of Chlor-Alkali Technology. 2005, Springer. p. 37-74.
11. Ahn, S.H., Choi, I., Park, H.-Y., Hwang, S.J., Yoo, S.J., Cho, E., Kim, H.-J., Henkensmeier, D., Nam, S.W., and Kim, S.-K., “Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis”. Chemical communications, 2013. 49(81), p. 9323-9325.
12. Kawashima, A., Akiyama, E., Habazaki, H., and Hashimoto, K., “Characterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution”. Materials Science Engineering: A, 1997. 226, p. 905-909.
13. Hong, S.H., Ahn, S.H., Choi, J., Kim, J.Y., Kim, H.Y., Kim, H.-J., Jang, J.H., Kim, H., and Kim, S.-K., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”. Applied Surface Science, 2015. 349, p. 629-635.
14. Wang, M., Wang, Z., Guo, Z., and Li, Z., “The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction”. international journal of hydrogen energy, 2011. 36(5), p. 3305-3312.
15. Oliver-Tolentino, M.A., Arce-Estrada, E.M., Cortés-Escobedo, C.A., Bolarín-Miro, A.M., Sánchez-De Jesús, F., González-Huerta, R.d.G., and Manzo-Robledo, A., “Electrochemical behavior of NixW1− x materials as catalyst for hydrogen evolution reaction in alkaline media”. Journal of alloys compounds, 2012. 536, p. S245-S249.
16. Nsanzimana, J.M.V., Peng, Y., Miao, M., Reddu, V., Zhang, W., Wang, H., Xia, B.Y., and Wang, X., “An earth-abundant tungsten–nickel alloy electrocatalyst for superior hydrogen evolution”. ACS Applied Nano Materials, 2018. 1(3), p. 1228-1235.
17. Jiang, L., Ji, S.-J., Xue, H.-G., and Suen, N.-T., “HER activity of MxNi1-x (M= Cr, Mo and W; x≈ 0.2) alloy in acid and alkaline media”. International Journal of Hydrogen Energy, 2020.
18. Latyshev, V., Vorobiov, S., Shylenko, O., and Komanicky, V., “Screening of electrocatalysts for hydrogen evolution reaction using bipolar electrodes fabricated by composition gradient magnetron sputtering”. Journal of Electroanalytical Chemistry, 2019. 854, p. 113562.
19. Eliaz, N. and Gileadi, E., ”Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals”, Modern aspects of electrochemistry. 2008, Springer. p. 191-301.
20. Brenner, A.,Electrodeposition of alloys: principles and practice, Elsevier,2013.
21. Elias, L., Scott, K., and Hegde, A.C., “Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy”. Journal of Materials Engineering Performance, 2015. 24(11), p. 4182-4191.
22. Vaaler, L.E. and Holt, M., “Codeposition of tungsten and nickel from an aqueous ammoniacal citrate bath”. Transactions of the Electrochemical Society, 1946. 90(1), p. 43.
23. Красиков, А. and Красиков, В., “MECHANISM OF NICKEL-TUNGSTEN ALLOY ELECTRODEPOSITION FROM PYROPHOSPHATE ELECTROLYTE”.
24. El-Giar, E.M. and Thomson, D.J., "Localized electrochemical plating of interconnectors for microelectronics", in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. 1997, IEEE: Winnipeg, MB, Canada.
25. Yeo, S.H., Choo, J.H., and Sim, K.H.A., “On the effects of ultrasonic vibrations on localized electrochemical deposition”. Journal of Micromechanics and Microengineering, 2002. 12, p. 271–279.
26. Seol, S.K., Yi, J.M., Jin, X., Kim, C.C., Je, J.H., Tsai, W.L., Hsu, P.C., Hwu, Y., Chen, C.H., Chang, L.W., and Margaritondo, G., “Coherent Microradiology Directly Observes a Critical Cathode-Anode Distance Effect in Localized Electrochemical Deposition”. Electrochemical and Solid-State Letters, 2004. 7(9).
27. Seol, S.K., Pyun, A.R., Hwu, Y., Margaritondo, G., and Je, J.H., “Localized Electrochemical Deposition of Copper Monitored Using Real-Time X-ray Microradiography”. Advanced Functional Materials, 2005. 15(6), p. 934-937.
28. Seol, S.K., Kim, J.T., Je, J.H., Hwu, Y., and Margaritondo, G., “Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-Free Localized Electrochemical Deposition”. Electrochemical and Solid-State Letters, 2007. 10(5).
29. Lin, C.S., Lee, C.Y., Yang, J.H., and Huang, Y.S., “Improved Copper Microcolumn Fabricated by Localized Electrochemical Deposition”. Electrochemical and Solid-State Letters, 2005. 8(9).
30. Pané, S., Panagiotopoulou, V., Fusco, S., Pellicer, E., Sort, J., Mochnacki, D., Sivaraman, K., Kratochvil, B., Baró, M., and Nelson, B.J., “The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns”. Electrochemistry communications, 2011. 13(9), p. 973-976.
31. Brant, A.M., Sundaram, M.M., and Kamaraj, A.B., “Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing”. Journal of Manufacturing Science and Engineering, 2015. 137(1).
32. Wang, F., Bian, H., and Xiao, Y., “Fabrication of Micro-Sized Copper Columns Using Localized Electrochemical Deposition with a 20 μm Diameter Micro Anode”. ECS Journal of Solid State Science and Technology, 2019. 8(4), p. P223.
33. Wang, F., Wang, F., and He, H., “Parametric Electrochemical Deposition of Controllable Morphology of Copper Micro-Columns”. Journal of The Electrochemical Society, 2016. 163(10), p. E322-E327.
34. 張庭綱, "微陽極導引電鍍法製作銅微柱及銅柵欄之研究". 2004年, 國立中央大學.
35. 陳譽升, "鎳微柱電鍍受鍍浴黏度與電阻率之影響". 2011年, 國立中央大學.
36. 游睿為, "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析". 2001年, 國立中央大學,.
37. 葉柏青, "微陽極導引電鍍與監測". 2003年, 國立中央大學.
38. 賴格源, "微陽極導引電鍍銅其組織及覆蓋範圍之探討". 2006年, 國立中央大學.
39. Lin, J.C., Jang, S.B., Lee, D.L., Chen, C.C., Yeh, P.C., Chang, T.K., and Yang, J.H., “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating”. Journal of Micromechanics and Microengineering, 2005. 15(12), p. 2405-2413.
40. Lin, J.C., Chang, T.K., Yang, J.H., Jeng, J.H., Lee, D.L., and Jiang, S.B., “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”. Journal of Micromechanics and Microengineering, 2009. 19(1).
41. Chang, T.K., Lin, J.C., Yang, J.H., Yeh, P.C., Lee, D.L., and Jiang, S.B., “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”. Journal of Micromechanics and Microengineering, 2007. 17(11), p. 2336-2343.
42. 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金銅微柱". 2005年, 國立中央大學.
43. 楊仁泓, "微陽極導引電鍍法製備微析物之局部電場強度分析". 2009年, 國立中央大學.
44. Ciou, Y.-J., Hwang, Y.-R., and Lin, J.-C., “Fabrication of Two-Dimensional Microstructures by Using Micro-Anode-Guided Electroplating with Real-Time Image Processing”. ECS Journal of Solid State Science and Technology, 2014. 3(7), p. P268-P271.
45. 顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析". 2015年, 國立中央大學.
46. 李昱, "以微電鍍法製備鎳鐵合金三維微結構之研究". 2018年, 國立中央大學.
47. 李盈家, "以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為". 2020年, 國立中央大學.
48. 皮托科技股份有限公司,COMSOL MULTIPHYSICS 有限元素分析快易通, 皮托科技, 彰化市,2014年.
49. 皮托科技股份有限公司,COMSOL MULTIPHYSICS 有限元素分析之化工大法, 皮托科技, 彰化市,2014年.
50. 丁志華, 管正平, 黃新言, and 戴寶通, “奈米壓痕量測系統簡介”. 奈米通訊期刊, 2002年. 第九卷(第三期), p. 1-10.
51. Li, X. and Bhushan, B., “A review of nanoindentation continuous stiffness measurement technique and its applications”. Materials Characterization, 2002. 48(1), p. 11-36.
52. Oliver, W.C. and Pharr, G.M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”. Journal of Materials Research, 2011. 7(6), p. 1564-1583.
53. 張瑞慶, "奈米壓痕技術與應用", in 中華民國力學學會會訊. 2006年.
54. Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D., “Exploring specimen size effects in plastic deformation of Ni3 (Al, Ta)”. MRS Online Proceedings Library (OPL), 2002. 753.
55. Kurdi, A., Tabbakh, T., and Alhazmi, H., “Deformation of cold sprayed Ni-Sn coating under micro-pillar compression”. Surface and Coatings Technology, 2020. 403, p. 126425.
56. Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”. nature, 1972. 238(5358), p. 37-38.
57. 韓志國, 李愛芬, 龍敏南, 韓博平, “微藻光合作用制氫——能源危機的最終出路?”. 生態科學, 2003. 22(2), p. 104-108.
58. Hart, D. and Financial Times Energy Publishing, L.,Hydrogen power The commercial future ofthe ultimate fuel′,1997.
59. Zou, X. and Zhang, Y., “Noble metal-free hydrogen evolution catalysts for water splitting”. Chemical Society Reviews, 2015. 44(15), p. 5148-5180.
60. Tasić, G.S., Lačnjevac, U., Tasić, M.M., Kaninski, M.M., Nikolić, V.M., Žugić, D.L., and Jović, V.D., “Influence of electrodeposition parameters of Ni–W on Ni cathode for alkaline water electrolyser”. international journal of hydrogen energy, 2013. 38(11), p. 4291-4297.
61. González-Buch, C., Herraiz-Cardona, I., Ortega, E.M., García-Antón, J., and Pérez-Herranz, V., “Development of Ni-Mo, Ni-W and Ni-Co Macroporous Materials for Hydrogen Evolution Reaction”. CHEMICAL ENGINEERING TRANSACTIONS, 2013. 32.
62. 張藝, 王森林, 李彩彩, “Ni/LaNi5 多孔複合電極的製備及其析氫電催化性能”. 稀有金屬材料與工程, 2012. 41(3), p. 457-461.
63. 段錢花, 王森林, 王麗品, “電沉積多孔複合 Ni-P/LaNi5 電極及其析氫電催化性能”. 物理化學學報, 2012. 29(01), p. 123-130.
64. Jakšić, M., “Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases”. Electrochimica Acta, 1984. 29(11), p. 1539-1550.
65. Tanaka, S., Hirose, N., and Tanaki, T., “Evaluation of Raney–nickel cathodes prepared with aluminum powder and tin powder”. International journal of hydrogen energy, 2000. 25(5), p. 481-485.
66. Cai, J., Xu, J., Wang, J., Zhang, L., Zhou, H., Zhong, Y., Chen, D., Fan, H., Shao, H., and Zhang, J., “Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction”. International journal of hydrogen energy, 2013. 38(2), p. 934-941.
67. Herraiz-Cardona, I., González-Buch, C., Valero-Vidal, C., Ortega, E., and Pérez-Herranz, V., “Co-modification of Ni-based type Raney electrodeposits for hydrogen evolution reaction in alkaline media”. Journal of power sources, 2013. 240, p. 698-704.
68. Solmaz, R., Döner, A., and Kardaş, G., “Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution”. International journal of hydrogen energy, 2010. 35(19), p. 10045-10049.
69. Birry, L. and Lasia, A., “Studies of the Hydrogen evolution reaction on raney nickel—molybdenum electrodes”. Journal of applied electrochemistry, 2004. 34(7), p. 735-749.
70. Oslo, N.H., “Electrolyte cell active cathode with low overvoltage”. Nederlands Patent, 1978. 7801955.
71. De Giz, M., Silva, J., Ferreira, M., Machado, S., Ticianelli, E., Avaca, L., and Gonzalez, E., “Progress on the development of activated cathodes for water electrolysis”. International journal of hydrogen energy, 1992. 17(9), p. 725-729.
72. Wen, T.-C., Lin, S.-M., and Tsai, J.-M., “Sulphur content and the hydrogen evolving activity of NiS x deposits using statistical experimental strategies”. Journal of applied electrochemistry, 1994. 24(3), p. 233-238.
73. HINE, F., YAsuDA, M., and WATANABE, M., “Studies of the nickel-sulfur electrodeposited cathode”. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1979. 47(7), p. 401-408.
74. 杜敏, 魏緒鈞, “電解水析氫的 Ni—S 非晶態合金電極的研究”. 有色金屬: 冶煉部分, 1997(5), p. 38-40.
75. Paseka, I., “Sorption of hydrogen and kinetics of hydrogen evolution on amorphous Ni-Sx electrodes”. Electrochimica acta, 1993. 38(16), p. 2449-2454.
76. Zheng, Z., Li, N., Wang, C.-Q., Li, D.-Y., Meng, F.-Y., Zhu, Y.-M., Li, Q., and Wu, G., “Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction”. Journal of power sources, 2013. 230, p. 10-14.
77. 馬強, 巴俊洲, 蔣亞雄, 李軍, 吳文宏, “電沉積 Ni—S, Ni—WS 合金析氫陰極的研究”. 艦船科學技術, 2009. 31(2), p. 104-108.
78. Suffredini, H., Cerne, J., Crnkovic, F., Machado, S., and Avaca, L., “Recent developments in electrode materials for water electrolysis”. International Journal of Hydrogen Energy, 2000. 25(5), p. 415-423.
79. He, P., Yi, X., Ma, Y., Wang, W., Dong, F., Du, L., and Liu, H., “Effect of Gd2O3 on the hydrogen evolution property of nickel–cobalt coatings electrodeposited on titanium substrate”. Journal of Physics and Chemistry of Solids, 2011. 72(11), p. 1261-1264.
80. 楊靜, 張存中, 吳仲達, “Preparation and catalytic property of amorphous Ni-Mo-Co alloy electrode”. 應用化學, 2000. 17(5), p. 475-478.
81. 鄒勇進, 肖作安, 費錫明, “電沉積 Co-Ni-W 合金電極在鹼性溶液中的析氫電催化活性”. 稀有金屬, 2004. 28(5), p. 954-957.
82. Campillo, B., Sebastian, P., Gamboa, S., Albarran, J., and Caballero, L., “Electrodeposited Ni–Co–B alloy: application in water electrolysis”. Materials Science and Engineering: C, 2002. 19(1-2), p. 115-118.
83. 汪繼紅, 費錫明, 龍光斗, 李偉, “稀土鈰對鎳—鈷合金電極的析氫催化性能的影響”. 材料保護, 2003. 36(6), p. 12-13.
84. Jing, Y. and Zhongda, W., “Activity Research on Hydrogen Evolution of Ni Mo Alloy Electrode”. CHINESE JOURNAL OF RARE METALS, 1998.
85. 姚素薇, 趙轉清, 張衛國, 龔正烈, “Preparation and Property of Ni-Mo/p-Si Electrode Materials”. 材料研究學報, 2002. 16(1), p. 83-87.
86. Videa, M., Crespo, D., Casillas, G., and Zavala, G., “Electrodeposition of nickel-molybdenum nanoparticles for their use as electrocatalyst for the hydrogen evolution reaction”. Journal of New Materials for Electrochemical Systems, 2010. 13(3), p. 239-244.
87. Han, Q., Cui, S., Pu, N., Chen, J., Liu, K., and Wei, X., “A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium”. International Journal of Hydrogen Energy, 2010. 35(11), p. 5194-5201.
88. WEI, H.-x., ZHOU, Z.-f., LV, D.-f., and MA, Q., “Pulse plating of Ni-Mo alloy electrodes for Hydrogen evolution”. Ship Science and Technology, 2011, p. 09.
89. Aaboubi, O., “Hydrogen evolution activity of Ni–Mo coating electrodeposited under magnetic field control”. International Journal of Hydrogen Energy, 2011. 36(8), p. 4702-4709.
90. Damian, A. and Omanovic, S., “Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix”. Journal of Power Sources, 2006. 158(1), p. 464-476.
91. 李愛昌, 龍運前, 劉輝, 路敏, 張翠麗, “複合電沉積製備 (Ni-Mo)-TiO2 電極及其電催化析氫性能”. 材料科學與工藝, 2009. 17(6), p. 793-796.
92. 李凝, 高誠輝, “電沉積 Ni-Mo/ZrO2 合金鍍層結構及其電化學性能”. 材料科學與工藝, 2011. 19(1), p. 104-109.
93. 黃令, 楊防阻, 許書楷, 周紹民, “Structure of nanocrystalline Ni-Mo-Co alloy and electrocatalytic hydrogen evolution on electrode thereof”. 應用化學, 2001. 18(10), p. 767-771.
94. 黃令, 許書楷, “奈米晶鎳—鉬合金電沉積層的結構與性能”. 應用化學, 1999. 16(2), p. 38-41.
95. 薛文華, “鎳鎢合金電沉積及其析氫電催化性能的研究”. 廣州化工, 2003. 31(3), p. 14-17.
96. 肖秀峰, 劉榕芳, 朱則善, “Ni-W-WC 複合電極在鹼性介質中的電催化析氫”. 物理化學學報, 1999. 15(08), p. 742-746.
97. 姚素薇, 姚穎悟, 張衛國, 王宏智, “鎳-鎢/二氧化鋯奈米複合電極析氫性能的研究”. 電鍍與塗飾, 2009. 28(2), p. 1-3.
98. 張衛國, 姚素薇, 趙轉清, 龔正烈, “p 型單晶矽上電鍍奈米 Ni—W—P 合金電極及其光照析氫研究”. 應用化學, 2001. 18(10), p. 790-793.
99. Wang, M., Wang, Z., and Guo, Z., “The structure evolution and stability of NiW films electrodeposited under super gravity field”. Materials Letters, 2010. 64(10), p. 1166-1168.
100. 蔡天曉, 鞠鶴, 武宏讓, 杜繼紅, 康新婷, 張玉萍, “電沉積 Ni—W—P 活性陰極的製備研究”. 氯鹼工業, 2001(12), p. 8-9.
101. 李愛昌, 駱鵬飛, 劉瑛, “電沉積製備 (Ni-WP)-TiO2 奈米複合電極的催化析氫性能”. 中國有色金屬學報, 2010. 20(4), p. 712-717.
102. 張衛國, 尚云鵬, 劉麗娜, 姚素薇, 王宏智, “電化學法製備 Ni-WP 奈米線陣列電極及其催化析氫性能”. 物理化學學報, 2011. 27(04), p. 900-904.
103. Ciou, Y.-J., "即時影像導引局部電化學沉積系統製作立 體微結構物之研究". 2016, National Central University.
104. Nickell, R.A., Zhu, W.H., Payne, R.U., Cahela, D.R., and Tatarchuk, B.J., “Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide”. Journal of power sources, 2006. 161(2), p. 1217-1224.
105. Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K., “A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film”. Journal of the Korean institute of surface engineering, 2011. 44(2), p. 68-73.
106. Kim, W.-B., Lee, C.-G., Lee, J.-C., and Seo, C.-Y., “Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition”. Journal of the Korean institute of surface engineering, 1998. 8(10), p. 898-904.
107. Sürme, Y., Gürten, A.A., and Kayakırılmaz, K., “Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution”. Metals and Materials International, 2013. 19(4), p. 803-812.
108. T.Yamasaki, P.Schloβmacher, K.Ehrlich, and Y.Ogino, “Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization”. Nanostructured Materials, 1998. 10(3), p. 378-388.
109. Yamasaki, T., Tomohira, R., Ogino, Y., Schloßmacher, P., and Ehrlich, K., “Formation of Ductile Amorphous & Nanocrystalline Ni-W Alloys by Electrodeposition”. PLATING & SURFACE FINISHING, 1998. 10(3), p. 375-388.
110. Yamasaki, T., Schloßmacher, P., Ehrlich, K., and Ogino, Y., “Nanocrystallization and Mechanical Properties of an Amorphous Electrodeposited Ni<sub>75</sub>W<sub>25</sub> Alloy”. Materials Science Forum, 1998. 269-272, p. 975-980.
111. Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E., “Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys”. Langmuir, 2001. 17(26), p. 8270–8275.
112. Handbook, A., “Alloy phase diagrams”. ASM international, 1992. 3, p. 2.
113. Vamsi, M., Wasekar, N.P., and Sundararajan, G., “Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings”. Surface Coatings Technology, 2017. 319, p. 403-414.
114. Allahyarzadeh, M.H., Aliofkhazraei, M., Rezvanian, A.R., Torabinejad, V., and Sabour Rouhaghdam, A.R., “Ni-W electrodeposited coatings: Characterization, properties and applications”. Surface and Coatings Technology, 2016. 307, p. 978-1010.
115. Benaicha, M., “Electrodeposition and Characterization of W-rich NiW Alloys from Citrate Electrolyte”. International Journal of Electrochemical Science, 2016, p. 7605-7620.
116. Elias, L., Cao, P., and Hegde, A.C., “Magnetoelectrodeposition of Ni–W alloy coatings for enhanced hydrogen evolution reaction”. RSC Advances, 2016. 6(112), p. 111358-111365.
117. Elias, L. and Hegde, A.C., “Effect of including the carbon nanotube and graphene oxide on the electrocatalytic behavior of the Ni–W alloy for the hydrogen evolution reaction”. New Journal of Chemistry, 2017. 41(22), p. 13912-13917.
118. Elias, L. and Hegde, A.C., “Synthesis of Ni-W-Graphene oxide composite coating for alkaline hydrogen production”. Materials Today: Proceedings, 2018. 5(1), p. 3078-3083.
119. Elias, L., Scott, K., and Hegde, A.C., “Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy”. Journal of Materials Engineering and Performance, 2015. 24(11), p. 4182-4191.
120. Neethu, R.M. and Hegde, A.C., “Development of Ni-W alloy coatings and their electrocatalytic activity for water splitting reaction”. Physica B: Condensed Matter, 2020. 597.
121. Oliver-Tolentino, M.A., Arce-Estrada, E.M., Cortés-Escobedo, C.A., Bolarín-Miro, A.M., Sánchez-De Jesús, F., González-Huerta, R.d.G., and Manzo-Robledo, A., “Electrochemical behavior of NixW1−x materials as catalyst for hydrogen evolution reaction in alkaline media”. Journal of Alloys and Compounds, 2012. 536, p. S245-S249.
122. Conway, B. and Jerkiewicz, G., “Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’for cathodic H2 evolution kinetics”. Electrochimica Acta, 2000. 45(25-26), p. 4075-4083.
123. M.Jaksic, M., “Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions”. Electrochimica Acta, 2000. 45(25-26), p. 4085-4099.
124. M.Jaksic, M., “Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions”. International Journal of Hydrogen Energy, 2001. 26(6), p. 559-578.
125. 黃俊強, "微電鍍法之製程參數對其製備鎳鐵合金微柱特性之影響". 2010, 國立中央大學.
126. 張翔, "銅鎳合金微結構之微電鍍研究". 2018, 國立中央大學.
127. 吳冠勳, "以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究". 2019, 國立中央大學.
128. Raj, I.A. and Vasu, K., “Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings”. Journal of applied electrochemistry, 1990. 20(1), p. 32-38.
129. Jakšić, J., Vojnović, M., and Krstajić, N., “Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes”. Electrochimica Acta, 2000. 45(25-26), p. 4151-4158.
130. Zheng, Z., Li, N., Wang, C.-Q., Li, D.-Y., Meng, F.-Y., and Zhu, Y.-M., “Effects of CeO2 on the microstructure and hydrogen evolution property of Ni–Zn coatings”. Journal of power sources, 2013. 222, p. 88-91.
131. González-Buch, C., Herraiz-Cardona, I., Ortega, E., García-Antón, J., and Pérez-Herranz, V., “Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media”. International journal of hydrogen energy, 2013. 38(25), p. 10157-10169.
132. Sheng, W., Myint, M., Chen, J.G., and Yan, Y., “Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces”. Energy Environmental Science, 2013. 6(5), p. 1509-1512.
133. Fan, C., Piron, D., Sleb, A., and Paradis, P., “Study of Electrodeposited Nickel‐Molybdenum, Nickel‐Tungsten, Cobalt‐Molybdenum, and Cobalt‐Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis”. Journal of the Electrochemical Society, 1994. 141(2), p. 382.
134. González Buch, C., Herraiz Cardona, I., Ortega Navarro, E.M., García-Antón, J., and Pérez-Herranz, V., “Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction”. Chemical Engineering Transactions, 2013. 32, p. 865-870.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-3-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明