博碩士論文 109329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.148.109.6
姓名 游寓閔(Yu-Min Yu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 具高效且穩定鈀鈷合金氫化物觸媒應用於酸性及鹼 性介質析氫反應之研究
(Highly Active and Stable Pd-Co Hydride Catalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 由於環境汙染與能源需求問題日益漸增,發展潔淨和可持續再生能源已是當務之急。氫(H2)具有高能量密度和零碳排放特性,被認為是傳統化石燃料的替代品。目前,析氫反應(hydrogen evolution reaction, HER)是最先進製氫技術之一,其中開發高效穩定且適用於廣泛 pH 值的電催化劑至關重要。
本研究分為兩個部分。第一部分透過油胺法合成氫化鈀(palladium hydride, PdH)並添加 3d 過渡金屬(例如:鐵、鈷及鎳)以形成二元合金觸媒(PdFeH、PdCoH 及PdNiH)研究其兩者合金化之效果。其中以PdCoH 的修飾效果最佳,在HER 反應中具有最低的過電位(22 mV)及出色的Tafel 斜率(24 mV dec-1),且質量活性(mass activity, MA)(494 mA/gPd)為PdH0.3 的2.2 倍,展現出優異的HER 活性。

第二部分是以不同比例的鈷添加到鈀氫化物的結構中,透過X 光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)及CO 剝離測試(CO-stripping)的結果顯示,摻入適量的鈷與氫原子,不僅能減少了表面鈀的氧化進而改變了鈀的電子結構,從中平衡了Pd 的氫氣吸附能(hydrogen adsorption energy, Hads)。在酸性和鹼性電解液中,Pd3CoH 展現優異的HER 性能,具有極低的過電位(18 和32 mV)和Tafel 斜率(22 和74 mV dec-1)且表現出優異的穩定性。值得注意的是,Pd3CoH 在鹼性中經過5000 圈穩定度測試後,由於親氧的鈷作為保護層和提供豐富的活性位點,整體的電催化活性顯著提升且加快了HER 的反應動力學。本研究結合了氫化物與過渡金屬修飾的優點設計了鈀基合金氫化物,因為協同效應使其在酸性及鹼性HER 中皆展現出卓越的活性及穩定度。此研究從材料設計到其應用皆提供HER 及其他電催化領域新穎的思維及方向。
摘要(英) Due to the increasing environmental pollution and energy demand, the development of clean and sustainable renewable energy has become a top priority.
Hydrogen (H2), which owns high energy density and zero carbon emissions, is considered to be an alternative to traditional fossil fuels. Currently, hydrogen evolution reaction (HER) is one of the most advanced H2 production technologies, and the development of efficient and stable electrocatalysts applied in a wide range of pH values is crucial for HER economy.
This study is divided into two parts. In the first part, palladium hydride (PdH) and Pd alloy hydrides such as PdFeH, PdCoH, and PdNiH are prepared by oleylamine (OAm) method. Among all samples, for the HER performance, PdCoH shows the best modification effect during HER, including the lowest
overpotential (η10) at 10 mA cm-2 (22 mV), excellent Tafel slope (24 mV dec-1), and the highest mass activity (MA), which is 2.2 times higher than that of PdH0.3.
In the second part, PdxCoH (Pd9CoH, Pd3CoH and PdCoH) are synthesized by OAm method. The X-ray photoelectron spectroscopy (XPS) and CO-stripping reveal that with proper Co and H addition, surface Pd oxidation can be retarded.
In addition, the addition of Co modifies the electronic structure of Pd, thereby reducing the hydrogen adsorption energy (Hads) of Pd, and improving HER activity. Among all samples, Pd3CoH exhibits the best HER activity with the lowest η10 (18 and 32 mV), smallest Tafel slope (22 and 74 mV dec-1) and excellent stability of 5000 cycles in acidic and alkaline solutions, respectively. Notably, after the stability test in alkaline solution, the electrocatalytic activity and the kinetics of HER are significantly improved due to the oxyphilic cobalt working as protection layer and providing abundant active sites. In this study, Pd-based alloy hydride is designed to combine the advantages of hydride and transition metal modification, which exhibits excellent HER activity and stability in both acidic and alkaline. We provide novel thinking and strategy for the future development and perspective of catalysts from material design to application.
關鍵字(中) ★ 析氫反應
★ 氫化鈀
★ 鈀鈷奈米觸媒
★ 協同效應
★ 穩定度
關鍵字(英) ★ hydrogen evolution reaction (HER)
★ palladium hydride (PdH)
★ PdCo nanocatalysts
★ synergistic effect
★ stability
論文目次 摘要 .................. i
Abstract.......................... iii
致謝 .......... v
Table of Contents ........... viii
List of Figures ............. x
List of Tables .............. xii
Chapter 1 Introduction ......... 1
1.1 The Mechanism of HER .... 2
1.2 Preparation and application of palladium hydride (PdH)....................... 4
1.3 Decorations of 3d-transition metal catalysts ....... 7
1.4 Motivation and approach ........... 8
Chapter 2 Experimental Section .......... 9
2.1 Synthesis of catalysts ........................ 9
2.1.1 Reagents ....................... 9
2.1.2 Preparation of PdMH (M = Co, Ni and Fe) NPs ........ 9
2.1.3 Preparation of PdH NPs ............ 10
2.1.4 Preparation of PdxCoH catalysts ........... 10
2.2 Physical characterizations ............... 11
2.3 Electrochemical characterization ............ 13
Chapter 3 Results and Discussion .............. 16
3.1 The Structural and Electrochemical Characterizations of PdH and PdMH
(M = Co, Fe and Ni) Catalysts .......... 16
3.1.1 Materials characterizations........................ 16
3.1.2 The HER Performance of the Catalysts. ........ 22
3.1.3 Summary ........... 26
3.2 The Structural and Electrochemical Characterizations of PdxCoH Catalysts .............. 27
3.2.1 Materials characterizations..................... 27
3.2.2 The HER performance of the catalysts in acidic electrolyte ......... 34
3.2.3 The HER performance of the catalysts in alkaline electrolyte ........ 40
3.2.4 Summary ............................... 44
Chapter 4 Conclusions ......................................... 46
References ....................... 48
參考文獻 [1] Khan, M. A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J., Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews 2018, 1 (4), 483-530.
[2] Li, A.; Sun, Y.; Yao, T.; Han, H., Earth‐abundant transition‐metal‐based electrocatalysts for water electrolysis to produce renewable hydrogen. Chem. Eur. J. 2018, 24 (69), 18334-18355.
[3] Wang, S.; Lu, A.; Zhong, C.-J., Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 2021, 8 (1), 4.
[4] Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120 (2), 851-918.
[5] Hua, W.; Sun, H.-H.; Xu, F.; Wang, J.-G., A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020, 39 (4), 335-351.
[6] Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C., Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26-55.
[7] Shi, Y.; Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45 (6), 1529-1541.
[8] Li, Y.; Chen, S.; Long, R.; Ju, H.; Wang, Z.; Yu, X.; Gao, F.; Cai, Z.; Wang, C.; Xu, Q.; Jiang, J.; Zhu, J.; Song, L.; Xiong, Y., Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. Nano Energy 2017, 34, 306-312.
[9] Wang, G.; Liu, J.; Sui, Y.; Wang, M.; Qiao, L.; Du, F.; Zou, B., Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis. J. Mater. Chem. A 2019, 7 (24), 14876-14881.
[10] Feng, Y.; Shao, Q.; Ji, Y.; Cui, X.; Li, Y.; Zhu, X.; Huang, X., Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 2018, 4 (7), eaap8817.
[11] Alom, M. S.; Kananke-Gamage, C. C. W.; Ramezanipour, F., Perovskite Oxides as Electrocatalysts for Hydrogen Evolution Reaction. ACS Omega 2022, 7 (9), 7444-7451.
[12] Sajeev, A.; Paul, A. M.; Nivetha, R.; Gothandapani, K.; Gopal, T. S.; Jacob, G.; Muthuramamoorty, M.; Pandiaraj, S.; Alodhayb, A.; Kim, S. Y.; Van Le, Q.; Show, P. L.; Jeong, S. K.; Grace, A. N., Development of Cu(3)N electrocatalyst for hydrogen evolution reaction in alkaline medium. Sci. Rep. 2022, 12 (1), 2004-2004.
[13] Moschkowitsch, W.; Lori, O.; Elbaz, L., Recent Progress and Viability of PGM-Free Catalysts for Hydrogen Evolution Reaction and Hydrogen Oxidation Reaction. ACS Catal. 2022, 12 (2), 1082-1089.
[14] Wang, L.; Zhu, Y.; Zeng, Z.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J., Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31, 456-461.
[15] Wang, S.; Tian, D.; Wang, X.; Qin, J.; Tang, Y.; Zhu, J.; Cong, Y.; Liu, H.; Lv, Y.; Qiu, C.; Gao, Z.; Song, Y., Uniform PdH0.33 nanodendrites with a high oxygen reduction activity tuned by lattice H. Electrochem. Commun. 2019, 102, 67-71.
[16] Shen, C.; Chen, H.; Qiu, M.; Shi, Y.; Yan, W.; Jiang, Q.; Jiang, Y.; Xie, Z., Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation. J. Mater. Chem. A 2022.
[17] Sun, H.-Y.; Ding, Y.; Yue, Y.-Q.; Xue, Q.; Li, F.-M.; Jiang, J.-X.; Chen, P.; Chen, Y., Bifunctional palladium hydride nanodendrite electrocatalysts for hydrogen evolution integrated with formate oxidation. ACS Appl. Mater. Interfaces 2021, 13 (11), 13149-13157.
[18] Sarkar, S.; Peter, S. C., An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5 (9), 2060-2080.
[19] Bu, L.; Zhu, X.; Zhu, Y.; Cheng, C.; Li, Y.; Shao, Q.; Zhang, L.; Huang, X., H-implanted Pd icosahedra for oxygen reduction catalysis: from calculation to practice. CCS Chemistry 2021, 3 (8), 1972-1982.
[20] Zhang, J.; Chen, M.; Li, H.; Li, Y.; Ye, J.; Cao, Z.; Fang, M.; Kuang, Q.; Zheng, J.; Xie, Z., Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy 2018, 44, 127-134.
[21] Zhang, L.; Chang, Q.; Chen, H.; Shao, M., Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198-219.
[22] Wu, Z.-P.; Caracciolo, D. T.; Maswadeh, Y.; Wen, J.; Kong, Z.; Shan, S.; Vargas, J. A.; Yan, S.; Hopkins, E.; Park, K.; Sharma, A.; Ren, Y.; Petkov, V.; Wang, L.; Zhong, C.-J., Alloying–realloying enabled high durability for Pt–Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat. Commun. 2021, 12 (1), 859.
[23] Wang, J.; Bao, J.; Zhou, Y.; Zhang, Y.; Sun, B.; Wang, M.; Sheng, X.; Liu, W.; Luo, C.; Xue, Y.; Guo, C.; Chen, X., Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction. J. Solid State Electrochem. 2020, 24 (1), 137-144.
[24] Chen, J.; Xia, G.; Jiang, P.; Yang, Y.; Li, R.; Shi, R.; Su, J.; Chen, Q., Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2016, 8 (21), 13378-13383.
[25] Liao, H.; Wei, C.; Wang, J.; Fisher, A.; Sritharan, T.; Feng, Z.; Xu, Z. J., A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nano-Pd Surface in Alkaline Media. Adv. Energy Mater 2017, 7 (21), 1701129.
[26] Li, J.; Li, F.; Guo, S.-X.; Zhang, J.; Ma, J., PdCu@Pd Nanocube with Pt-like Activity for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9 (9), 8151-8160.
[27] Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L., Efficient Water Oxidation Using CoMnP Nanoparticles. J. Am. Chem. Soc. 2016, 138 (12), 4006-4009.
[28] Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M., Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15 (2), 197-203.
[29] Zheng, X.; Yao, Y.; Ye, W.; Gao, P.; Liu, Y., Building up bimetallic active sites for electrocatalyzing hydrogen evolution reaction under acidic and alkaline conditions. Chem. Eng. J. 2021, 413, 128027.
[30] Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M., Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces. Sci. 2011, 334 (6060), 1256-60.
[31] Yang, L.; Wang, N.; Tao, B.; Miao, F.; Zang, Y.; Chu, P. K., Co(OH)2 nanosheet arrays electrodeposited with palladium nanoparticles for hydrogen evolution reaction. J. Alloys Compd. 2019, 810, 151775.
[32] Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R., Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4 (6), 519-525.
[33] Jiang, T.; Yu, L.; Zhao, Z.; Wu, W.; Wang, Z.; Cheng, N., Regulating the intermediate affinity on Pd nanoparticles through the control of inserted-B atoms for alkaline hydrogen evolution. Chem. Eng. 2022, 433, 133525.
[34] Cheng, H.; Yang, N.; Liu, G.; Ge, Y.; Huang, J.; Yun, Q.; Du, Y.; Sun, C. J.; Chen, B.; Liu, J., Ligand‐Exchange‐Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Adv.Mater. 2020, 32 (11), 1902964.
[35] Majhi, K. C.; Yadav, M., Palladium oxide decorated transition metal nitride as efficient electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2021, 855, 157511.
[36] Phan, T.-H.; Schaak, R. E., Polyol synthesis of palladium hydride: bulk powders vs.nanocrystals. Chem. Commun. 2009, (21), 3026-3028.
[37] Kabiraz, M. K.; Kim, J.; Lee, W.-J.; Ruqia, B.; Kim, H. C.; Lee, S.-U.; Kim, J.-R.; Paek, S.-M.; Hong, J. W.; Choi, S.-I., Ligand Effect of Shape-Controlled β-Palladium Hydride Nanocrystals on Liquid-Fuel Oxidation Reactions. Chem. Mater. 2019, 31 (15), 5663-5673.
[38] Adams, B. D.; Chen, A., The role of palladium in a hydrogen economy. Mater.Today 2011, 14 (6), 282-289.
[39] Matin, M. A.; Jang, J.-H.; Kwon, Y., PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sources 2014, 262, 356-363.
[40] Wang, Y.; Pan, H.; Lin, Q.; Shi, Y.; Zhang, J., Synthesis of Pd-M@HCS(M = Co, Ni, Cu) Bimetallic Catalysts and Their Catalytic Performance for Direct Synthesis of H2O2. Catalysts 2020, 10 (3), 303.
[41] Bampos, G.; Bebelis, S.; Kondarides, D. I.; Verykios, X. E., Comparison of the Activity of Pd M (M: Ag, Co, Cu, Fe, Ni, Zn) Bimetallic Electrocatalysts for Oxygen Reduction Reaction. Top Catal. 2017, 60, 1260-1273.
[42] McCaulley, J. A., In-situ x-ray absorption spectroscopy studies of hydride and carbide formation in supported palladium catalysts. J. Phys. Chem. 1993, 97 (40), 10372-10379.
[43] Bhalothia, D.; Huang, T.-H.; Chang, C.-W.; Lin, T.-H.; Wu, S.-C.; Wang, K.-W.; Chen, T.-Y., High-Performance and Stable Hydrogen Evolution Reaction Achieved by Pt Trimer Decoration on Ultralow-Metal Loading Bimetallic PtPd Nanocatalysts. ACS Appl. Energy Mater. 2020, 3 (11), 11142-11152.
[44] Selinsek, M.; Deschner, B. J.; Doronkin, D. E.; Sheppard, T. L.; Grunwaldt, J.-D.; Dittmeyer, R., Revealing the Structure and Mechanism of Palladium during Direct Synthesis of Hydrogen Peroxide in Continuous Flow Using Operando Spectroscopy. ACS Catal. 2018, 8 (3), 2546-2557.
[45] Bugaev, A. L.; Usoltsev, O. A.; Guda, A. A.; Lomachenko, K. A.; Pankin, I. A.; Rusalev, Y. V.; Emerich, H.; Groppo, E.; Pellegrini, R.; Soldatov, A. V.; van Bokhoven, J. A.; Lamberti, C., Palladium Carbide and Hydride Formation in the Bulk and at the Surface of Palladium Nanoparticles. J. Phys. Chem. C 2018, 122 (22), 12029-12037.
[46] Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Srabionyan, V. V.; Bugaev, L. A.; Soldatov, A. V.; Lamberti, C.; Dmitriev, V. P.; van Bokhoven, J. A., Temperature- and Pressure-Dependent Hydrogen Concentration in Supported PdHx Nanoparticles by Pd K-Edge X-ray Absorption Spectroscopy. J. Phys. Chem. C 2014, 118 (19), 10416-10423.
[47] Sarangi, R., X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M-O(2) systems. Coord. Chem. Rev. 2013, 257 (2), 459-472.
[48] Kim, D.-S.; Kim, J.-H.; Jeong, I.-K.; Choi, J. K.; Kim, Y.-T., Phase change of bimetallic PdCo electrocatalysts caused by different heat-treatment temperatures: Effect on oxygen reduction reaction activity. J. Catal. 2012, 290, 65-78.
[49] Rutirawut, T.; Limphirat, W.; Sinsarp, A.; Tivakornsasithorn, K.; Srikhirin, T.; Osotchan, T., Composition and Oxidation State of Cobalt and Nickel-Iron Oxide Colloidal Nanoparticles in Liquid Phase. Adv. Mater. 2015, 1103, 21 - 27.
[50] Mao, J.; Chen, W.; He, D.; Wan, J.; Pei, J.; Dong, J.; Wang, Y.; An, P.; Jin, Z.; Xing, W.; Tang, H.; Zhuang, Z.; Liang, X.; Huang, Y.; Zhou, G.; Wang, L.; Wang, D.; Li, Y., Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3 (8), e1603068.
[51] Bhowmik, T.; Kundu, M. K.; Barman, S., Palladium Nanoparticle–Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy. ACS Catal. 2016, 6 (3), 1929-1941.
[52] Ju, J.; Liu, X.; Yu, J. J.; Sun, K.; Fathi, F.; Zeng, X., Electrochemistry at Bimetallic Pd/Au Thin Film Surfaces for Selective Detection of Reactive Oxygen Species and Reactive Nitrogen Species. Anal. Chem. 2020, 92 (9), 6538-6547.
[53] Zalineeva, A.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G., Electrochemical Behavior of Unsupported Shaped Palladium Nanoparticles. Langmuir 2015, 31 (5), 1605-1609.
[54] Schmidt, T. J.; Gasteiger, H. A.; Stäb, G. D.; Urban, P. M.; Kolb, D. M.; Behm, R. J., Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration. J. Electrochem. Soc. 1998, 145 (7), 2354-2358.
[55] Li, T.; Wang, R.; Yang, M.; Zhao, S.; Li, Z.; Miao, J.; Gao, Z.-D.; Gao, Y.; Song, Y.-Y., Tuning the surface segregation composition of a PdCo alloy by the atmosphere for increasing electrocatalytic activity. Sustain. Energy Fuels 2020, 4 (1), 380-386.
[56] Flores Espinosa, M. M.; Cheng, T.; Xu, M.; Abatemarco, L.; Choi, C.; Pan, X.; Goddard, W. A.; Zhao, Z.; Huang, Y., Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Lett. 2020, 5 (12), 3672-3680.
[57] Murthy, A. P.; Theerthagiri, J.; Madhavan, J., Insights on Tafel Constant in the Analysis of Hydrogen Evolution Reaction. J. Phys. Chem. C 2018, 122 (42), 23943-23949.
[58] Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3 (8), 634.
[59] Zhao, C.; Yan, X.; Wang, G.; Jin, Y.; Du, X.; Du, W.; Sun, L.; Ji, C., PdCo bimetallic nano-electrocatalyst as effective air-cathode for aqueous metal-air batteries. Int. J. Hydrog. Energy 2018, 43 (10), 5001-5011.
[60] Wu, J.; Cui, X.; Fan, J.; Zhao, J.; Zhang, Q.; Jia, G.; Wu, Q.; Zhang, D.; Hou, C.; Xu, S.; Jiao, D.; Gu, L.; Singh, D. J.; Zheng, W., Stable Bimetallene Hydride Boosts Anodic CO Tolerance of Fuel Cells. ACS Energy Lett. 2021, 6 (5), 1912-1919.
[61] Wang, A. L.; He, X. J.; Lu, X. F.; Xu, H.; Tong, Y. X.; Li, G. R. J. A. C. I. E., Palladium–cobalt nanotube arrays supported on carbon fiber cloth as high‐performance flexible electrocatalysts for ethanol oxidation. Angew. Chem. Int. Ed. 2015, 54 (12), 3669-3673.
[62] Jia, Y.; Huang, T.-H.; Lin, S.; Guo, L.; Yu, Y.-M.; Wang, J.-H.; Wang, K.-W.; Dai, S., Stable Pd–Cu Hydride Catalyst for Efficient Hydrogen Evolution. Nano Lett. 2022, 22 (3), 1391-1397.
[63] Kaushik, P.; Kaur, G.; Ram Chaudhary, G.; Batra, U., Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 556, 149769.
[64] Jiang, L.-W.; Huang, Y.; Chen, B.-B.; Zhou, J.-Q.; Liu, H.; Wang, J.-J., Electrochemically induced in-situ generated Co(OH)2 nanoplates to promote the Volmer process toward efficient alkaline hydrogen evolution reaction. Int. J. Hydrog. Energy 2021, 46 (12), 8497-8506.
[65] Peng, L.; Liao, M.; Zheng, X.; Nie, Y.; Zhang, L.; Wang, M.; Xiang, R.; Wang, J.; Li, L.; Wei, Z., Accelerated alkaline hydrogen evolution on M(OH)x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps. Chem. Sci. 2020, 11 (9), 2487-2493.
[66] Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat.Mater. 2012, 11 (6), 550-557.
[67] Luo, Y.; Li, X.; Cai, X.; Zou, X.; Kang, F.; Cheng, H.-M.; Liu, B., Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes. ACS Nano 2018, 12 (5), 4565-4573.
[68] Cai, Z. X.; Wang, Z. L.; Xia, Y. J.; Lim, H.; Zhou, W.; Taniguchi, A.; Ohtani, M.; Kobiro, K.; Fujita, T.; Yamauchi, Y., Tailored catalytic nanoframes from metal–organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 133 (9), 4797-4805.
[69] Zhong, M.; Li, L.; Zhao, K.; He, F.; Su, B.; Wang, D., PdCo alloys@N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Mater. Sci. 2021, 56 (25), 14222-14233.
[70] Zhang, R.; Sun, Z.; Feng, R.; Lin, Z.; Liu, H.; Li, M.; Yang, Y.; Shi, R.; Zhang, W.; Chen, Q., Rapid Adsorption Enables Interface Engineering of PdMnCo Alloy/Nitrogen-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9 (44), 38419-38427.
[71] Chao, T.; Luo, X.; Chen, W.; Jiang, B.; Ge, J.; Lin, Y.; Wu, G.; Wang, X.; Hu, Y.; Zhuang, Z.; Wu, Y.; Hong, X.; Li, Y., Atomically Dispersed Copper-Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2017, 56 (50), 16047-16051.
[72] Fan, J.; Wu, J.; Cui, X.; Gu, L.; Zhang, Q.; Meng, F.; Lei, B.-H.; Singh, D. J.; Zheng, W., Hydrogen Stabilized RhPdH 2D Bimetallene Nanosheets for Efficient Alkaline Hydrogen Evolution. J. Am. Chem. Soc. 2020, 142 (7), 3645-3651.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2022-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明