博碩士論文 108282002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.145.77.114
姓名 胡皓為(Hao-Wei Hu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Spatiotemporal dynamics of avalanche structural rearrangements through the interplay of structural heterogeneities, multiscale thermal acoustic wave excitations, and their intermittent synchronizations in cold dusty plasma liquids around freezing)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雪崩性行為(Avalanche activities)廣泛存在於不同強耦合系統之中,例如受壓固體或玻璃、地震、金融危機、大範圍停電、傳染病爆發、以及雪山上的雪崩,這類系統蘊含強交互作用及背景擾動,當一局部事件被激發,其影響能藉強交互作用傳遞,在時空間形成具冪次律(power law)大小分布群簇,了解雪崩性行為的普世動力學行為是重要議題,發展能預測具極端尺寸群簇之指標亦尤為重要。
至微觀尺度,接近凝固點之液體為一強耦合系統,交互作用及熱擾動的競爭下,冷液體具不同大小及晶格方向之晶粒(crystalline ordered domains),其各晶粒間蘊含缺陷團簇以補償不對齊晶格線。粒子傾向蘊含小振幅擾動,因其近鄰形成之位能井。當背景生成建設性熱擾動,粒子受其激發以脫離位能井並集體躍動(cooperative hopping),造成雪崩性結構重整,研究冷液體中結構重整能幫助了解雪崩性事件的普世行為。
本論文將藉由實驗系統,微粒電漿冷液體,從多尺度聲波角度探討上述議題。利用希爾伯特-黃轉換(Hilbert-Huang transform),拆解粒子間的相對縱向位移成多尺度聲波模態,以取得傳遞於冷液體中聲波之動力資訊。發現結構重整主發於由相鄰同方向旋轉晶粒誘發之剪切帶(shear strip)上,剪切帶上的局部結構重整沿其錯位缺陷(dislocation defect)之柏格斯向量(Burgers vector)滯-滑式(stick-slip)傳遞,並在時空間形成具冪次律分布樹枝狀團簇,於時空間傳播之多尺度聲波模態的相位同步(synchronization)及不同步(desynchronization)為剪切帶滯-滑式傳遞之關鍵。大型團簇傾向發生於具多個且散佈之錯位缺陷區域,在團簇發生前,已激發之低頻聲波模態逐步變形區域結構,進而誘發高頻聲波模態激發,促成後續不同尺度聲波模態的相位同步及團簇發生,證明錯位缺陷及低頻聲波模態振幅為預測大型團簇之關鍵。
摘要(英) Avalanche activities commonly occur in many strongly coupled systems. Cracking in stressed solids or glasses, earthquakes in seismic systems, financial crisis, blackouts of the electrical power network, epidemic spreading, and avalanches flowing down the mountains are good examples. These many-body systems typically possess heterogeneous structures and associated complicated interactions between the elements, which serve as channels for propagating the information. Once a local source is excited by a certain perturbation, it can spread and terminate in the network formed by those strongly coupled elements. These avalanche-type events thereby form clusters with various sizes and the associated cluster size distribution typically follows a power-law distribution. Investigating the generical dynamical behavior of avalanche activities is an important but challenging issue. In particular, identifying the precursor of the extreme avalanche activities with extreme cluster sizes is very important for preventing the great loss caused by the catastrophic events mentioned above.
Down to the microscopic level, the cold liquid close to the freezing point is also a strongly coupled system. The competition between mutual interaction and the reduced thermal agitation causes the formation of crystalline ordered domains with various sizes and orientations, which are surrounded by defect clusters due to the lattice mismatch. Dynamically, dust particles temporally exhibit small-amplitude rattling in the caging well set by neighbors. The cooperative hopping of particles rearranging the local structure and spreading in the xyt space can be excited once the constructive perturbation is accumulated. These avalanche-type behaviors make the cold liquid system a good model system for investigating the generic dynamical behavior of avalanche activities.
In this work, we experimentally investigate avalanche activities and, especially, extreme avalanche activities from the view of multiscale-acoustic waves, using a quasi-2D cold dusty plasma liquid as the experimental platform. The cold dusty plasma liquid can be formed by negatively charged particles suspended in a low-pressure Ar rf discharge. The particles with 7 mum diameter can be directly captured by a top view CCD with a standard optical microscope. By tracking local structural rearrangement sites induced by cooperatively hopping particles, avalanche activities in the form of structural rearrangement clusters with various sizes in the xyt space can be identified. By multidimensional complementary ensemble empirical mode decomposition from Hilbert-Huang transform, the relative transverse displacements of the dust particles are decomposed into traveling wave modes with different spatiotemporal scales. It is found that structural rearrangement clusters exhibit a power-law cluster size distribution. Larger clusters with sizes in the distribution tail are formed by networks of dendritic shear strips associated with co-rotating crystalline domains. The shear strip can propagate along the Burgers vector of the dislocation defect in a stick-slip fashion. The phase synchronization and desynchronization of the large-amplitude traveling wave modes with different scales are the keys for the stick-slip type propagation. If a region exhibits widely-distributed dislocation defects, it facilitates the excitation of the low-frequency wave modes that can further deteriorate the local structure without changing the topology. This feedback loop with the excitation of high-frequency wave modes causes the sequential excitation from low to high-frequency modes. The average local structural order, defect number, and the amplitude of the low-frequency modes can serve as reliable precursors of the extreme clusters.
關鍵字(中) ★ 微粒電漿
★ 微觀冷液體
★ 基礎物理
關鍵字(英)
論文目次 Chapter 1 Introduction…………………………… 1

Chapter 2 Background…………………………… 4
2.1 Avalanche activities…………………………… 4
2.1.1 Avalanches in various strongly-coupled systems…………………………… 4
2.1.2 Self-organize criticality…………………………… 5
2.2 Dynamical and structural heterogeneities in liquids around freezing…………………………… 6
2.2.1 Heterogeneous structures and motions…………………………… 6
2.2.2 Singular microstructures (topological defects)…………………………… 7
2.2.3 Cooperative motions, structural rearrangements, and defect dynamics…………………………… 10
2.3 Previous studies correlating structural rearrangements with dynamical and structural variables…………………………… 10
2.3.1 Low- and high-frequency modes…………………………… 10
2.3.2 Structural orders with different scales…………………………… 11
2.4 Acoustic waves in liquids…………………………… 12
2.4.1 Acoustic waves in liquids…………………………… 12
2.4.2 Microscopic acoustic wave turbulence…………………………… 13

Chapter 3 Experiment setup and data analysis…………………………… 14
3.1 Experimental setup…………………………… 14
3.2 Data analysis…………………………… 15
3.2.1 Bond orientational order…………………………… 15
3.2.2 Bond dynamic analysis and identification of SR site…………………………… 15
3.2.3 Decomposing relative transverse displacement into acoustic wave modes…………………………… 16

Chapter 4 Result and Discussion…………………………… 18
4.1 Avalanche-type structural rearrangements in cold liquids…………………………… 18
4.2 Interplay between stick-slip SRs and different-scale acoustic wave modes…………………………… 24
4.3 Dynamical and structural precursors of large clusters…………………………… 28
4.4 Discussions…………………………… 32

Chapter 5 Conclusion…………………………… 33
Reference 35
參考文獻 [1] J. P. Sethna, K. A. Dahmen, and C. R. Meyers, Nature (London) 410, 242 (2001).
[2] Z. Danku and F. Kun, Phys. Rev. Lett. 111, 084302 (2013).
[3] A. Shekhawat, S. Zapperi, and J. P. Sethna, Phys. Rev. Lett. 110,
185505 (2013).
[4] A. Ghosh, Z. Budrikis, V. Chikkadi, A. L. Sellerio, S. Zapperi, and P. Schall, Phys. Rev. Lett. 118, 148001 (2017).
[5] A. Helmstetter, Phys. Rev. Lett. 91, 058501 (2003).
[6] G. Niccolini, A. Carpinteri, G. Lacidogna, and A. Manuello, Phys. Rev. Lett. 106, 108503 (2011).
[7] J. Davidsen and A. Green, Phys. Rev. Lett. 106, 108502 (2011).
[8] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, Nature 464, 1025 (2010).
[9] J. Gao, S. V. Buldyrev, H. Stanley, and S. Havlin, Nat. Phys. 8, 40 (2012).
[10] W. Cai and L. Chen, F. Ghanbarnejad, and P. Grassbergerr, Nat. Phys. 11, 936 (2015).
[11] O. Ramos, E. Altshuler, and K. J. Måløy, Phys. Rev. Lett. 102, 078701 (2009).
[12] H. Jensen, Self-Organized Criticality (Cambridge Univ. Press, Cambridge, 1998).
[13] F. H. Stillinger, J. Chem. Phys. 89, 6461 (1988).
[14] M. M. Hurley and P. Harrowell, Phys. Rev. E 52, 1694 (1995).
[15] Y. J. Lai and L. I, Phys. Rev. Lett. 89, 155002 (2002).
[16] T. Kawasaki, T. Araki, and H. Tanaka, Phys. Rev. Lett. 99, 215701 (2007).
[17] Y. Han, N. Y. Ha, A. M. Alsayed, and A. G. Yodh, Phys. Rev. E 77, 041406 (2008).
[18] L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, and H. Löwen, Phys. Rev. Lett. 102, 238301 (2009).
[19] Y. S. Su, Y. H. Liu, and L. I, Phys. Rev. Lett. 109, 195002 (2012).
[20] Y. S. Su, V. W. Io, and L. I, Phys. Rev. E 86, 016405 (2012).
[21] I.V. Schweigert, V.A. Schweigert, A. Melzer, and A. Piel, Phys. Rev. E. 62, 1238 (2000).

[22]
E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000).
[23] C. Reichhardt and C.J.O. Reichhardt, Phys. Rev. Lett. 90, 095504 (2003)
[24] R. Candelier, A. Widmer-Cooper, J. K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, and D. R. Reichman, Phys. Rev. Lett. 105, 135702 (2010).
[25] C. Yang, C. W. Io, and L. I, Phys. Rev. Lett. 109, 225003 (2012)
[26] C. Yang, W. Wang, and L. I, Phys. Rev. E. 93, 013202 (2016)
[27] H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).
[28] H.W. Hu, W. Wang, and L. I, Phys. Rev. Lett. 123, 065002 (2019)
[29] V. Nosenko, J. Goree, and A. Piel, Phys. Rev. Lett. 97, 115001 (2006)
[30] A. Piel, D. Block, A. Melzer, M. Mulsow, J. Schablinski, A. Schella, F. Wieben, and J. Wilms, Eur. Phys. J. D 72, 80 (2018)
[31] N. E. Huang and Z. A. Wu, Rev. Geophys. 46, RG2006 (2008).
[32] J. R. Yeh, J. S. Shieh, and N. E. Huang, Adv. Adapt. Data Anal. 02, 135 (2010)
[33] H. Tong and H. Tanaka, Phys. Rev. X 8, 011041 (2018).
[34] H. Tong and H. Tanaka, Nat. Commun. 10, 5596 (2019).
[35] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu, Phys. Rev. Lett. 114, 108001 (2015).
[36] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J. Liu, Nat. Phys. 12, 469 (2016).
[37] A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).
[38] L. Berthier and R. L. Jack, Phys. Rev. E. 76, 041509 (2007).
[39] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[40] K. Chen, M. L. Manning, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. G. Yodh, Phys. Rev. Lett. 107, 108301 (2011).
[41] A. Ghosh, V. Chikkadi, P. Schall, and D. Bonn, Phys. Rev. Lett. 107, 188303 (2011).
[42] S. S. Schoenholz, A. J. Liu, R. A. Riggleman, and J. Rottler, Phys. Rev. X 4, 031014 (2014).
[43] H. Tong and N. Xu, Phys. Rev. E 90, 010401(R) (2014).
[44] D. Stauffer and A. Aharony, Introduction To Percolation Theory (Taylor and Francis, London, 1992)
[45] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
[46] H. Hinrichsen, Adv. Phys. 49, 815–958 (2000).
[47] D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge University Press, Cambridge, UK, 2002).
[48] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).
[49] D. R. Nelson, B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
[50] H.H. von Grddot{u}nberg, P. Keim, and G. Maret, Soft Matter, 3, 41 (2007).
[51] M. C. Chen, C. Yang, and L. I, Phys. Rev. E 90, 050401 (R) (2014).
[52] K. J. Strandburg, Bond-Orientational Order in Condensed Matter Systems (Springer, New York, 1992).
[53] H. Tanaka., H. Tong, R. Shi, and J. Russo, Nat. Rev. Phys. 1, 333 (2019).
[54] N. P. Kryuchkov, E. V. Yakovlev, E. A. Gorbunov, L. Couddot{e}del, A. M. Lipaev, and S. O. Yurchenko, Phys. Rev. Lett. 121, 075003 (2018).
[55] M. Nambu, S. V. Vladimirov, and P. K. Shukla, Phys. Lett.
A 203, 40 (1995).
[56] H. W. Hu, Y. C. Zhao, and L. I, submitted to Sci. Adv.
指導教授 伊林 審核日期 2022-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明