參考文獻 |
[1] H. Ritchie, M. Roser, Fossil Fuels, (https://ourworldindata.org/fossil-fuels)
[2] A. Choudhury, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation–A review, Renewable Sustainable Energy Rev., 20 (2013) 430-442.(https://doi.org/10.1016/j.rser.2012.11. 031)
[3] A.F.S. Molouk, T.Okanishi, H.Muroyama, T.Matsui, K.Eguchi, Electrochemical and Catalytic Behaviors of Ni–YSZ Anode for the Direct Utilization of Ammonia Fuel in Solid Oxide Fuel Cells, J. Electrochem. Soc., 162 (10)(2015) F1268-1274.
(http://dx.doi.org/10.1149/2.1011510jes)
[4] A. Fuerte, R.X. Valenzuela, M.J. Escudero, L. Daza, Ammonia as efficient fuel for SOFC, J. Power Sources, 192 (1)(2009) 170-174.
(https://doi.org/10.1016/j.jpowsour.2008.11.037)
[5] 李雪茹,加壓型SOFC陰極半電池實驗研究,碩士論文,國立中央大學,桃園,台灣,2013。
[6] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,桃園,台灣,2014。
[7] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,桃園,台灣,2015。
[8] 洪立翰,合成氣於加壓型SOFC之性能量測與其為氣渦輪機複合系統之模擬,碩士論文,國立中央大學,桃園,台灣,2015。
[9]洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,桃園,台灣,2016。
[10]呂育緯,熱循環、添加氫氣、加壓效應還原氮化鎳對平板型氨氣SOFCs之效應,碩士論文,國立中央大學,桃園,台灣,2020。
[11] B. Stoeckl, M. Preininger, V. Subotić, S. Megel, C. Folgner, C. Hochenauer, Towards a wastewater energy recovery system: The utilization of humidified ammonia by a solid oxide fuel cell stack, J. Power Sources, 450 (2020) 227608.
(https://doi.org/10.1016/j.jpowsour.2019.227608)
[12] B. Stoeckl, M. Preininger, V. Subotić, C. Gaber, M. Seidl, P. Sommersacher, H. Schroettner, C. Hochenauer, High Utilization of Humidified Ammonia and Methane in Solid Oxide Fuel Cells: An Experimental Study of Performance and Stability, J. Electrochem. Soc., 166 (12)(2019) F774-F783.(http://dx.doi.org/10.1149/2.0781912jes)
[13] G. Cinti, G. Discepoli, E. Sisani, U. Desideri, SOFC operating with ammonia: Stack test and system analysis, Int. J. Hydrogen Energy, 41 (2016) 13583-13590.(https://doi.org/10.1016/j.ijhydene.2016.06.070)
[14] M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, K. Eguchi, Development of 1 kW-class Ammonia-
fueled Solid Oxide Fuel Cell Stack, Fuel Cell, 20 (2020) 80-88.
(https://doi.org/10.1002/fuce.201900131)
[15] R.A. Budiman, T. Ishiyama, K.D. Bagarinao, H. Kishimoto, K Yamaji, T. Horita, Dependence of hydrogen oxidation reaction on water vapor in anode-supported solid oxide fuel cells, Solid State Ionics, 362 (2021) 115565.( https://doi.org/10.1016/j.ssi.2021.115565)
[16] V.A.C. Haanappel, M.J. Smith, A review of standarding SOFC measurement and quality assurance at FZJ, J. Power Sources, 171 (1)(2007) 169-178.(https://doi.org/10.1016/j.jpowsour.2006.12.029)
[17] Y. Wang, Y. Gu, H. Zhang, J. Yang, J. Wang, W.Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, Z. Zhong, Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells, Appl. Energy, 270 (2020) 115185.
(https://doi.org/10.1016/j.apenergy.2020.115185)
[18] A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.
(https://doi.org/10.1016/j.pecs.2018.07.001)
[19] H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Prog. Nat. Sci.: Mater. Int., 30(6)(2020) 764-774. (https://doi.org/10.1016/j.pnsc.2020.09.003)
[20] K.H. Ng, H.A. Rahman, M.R. Somalu, Review: Enhancement of composite anode materials for low-temperature solid oxide fuels, Int. J. Hydrogen Energy, 44 (58)(2018) 30692-30704.
(https://doi.org/10.1016/j.ijhydene.2018.11.137)
[21] K. Nozawa, H. Orui, T. Komatsu, R. Chiba, H. Arai, Development of Highly Efficient Planar Solid Oxide Fuel Cells, NTT Energy and Environment Systems Laboratories, 6 (2008) 1-8.
(https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200802 sf4.html)
[22]W. Chanpeng, Y. Khunatorn, The effect of the input load current changed to a 1.2kW PEMFC performance, Energy Procedia, 9 (2011) 316-325. (https://doi.org/10.1016/j.egypro.2011.09.034)
[23] K. Miyazaki, H. Muroyama, T. Matsui, K. Eguchi, Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells, Sustainable Energy Fuels, 4 (2020) 5238-5246.
(10.1039/D0SE00841A)
[24] J. Yang, T. Akagi, T. Okanshi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic Influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells, Fuel Cells, 15 (2015) 390-397.
(https://doi.org/10.1002/fuce.201400135)
[25] G. Chen, X. Zhang, Y. Lui, Y. He, H. Liu, S. Geng, K. Yu, Y. Dong, Ionic conduction mechanism of a nanostructured BCY electrolyte for low-temperature SOFC, Int. J. Hydrogen Energy, 45 (2020) 24108-24115.
(https://doi.org/10.1016/j.ijhydene.2019.07.223)
[26] Y. Wang, Y. Gu, H. Zhang, J. Wang, W. Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells, Appl. Energy, 270 (2020) 115185.
(https://doi.org/10.1016/j.apenergy.2020.115185)
[27] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3-δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells, ACS Applied Materials & Interface, 7 (2015) 7406-7412.
(http://dx.doi.org/10.1021/acsami.5b01048)
[28] A. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Behavior of Ni-Based Cermet Anode for Ammonia-Fueled SOFCs, ECS Transactions, 68 (2015) 2751-2762. (https://iopscience.iop.or g/article/10.1149/06801.2751ecst)
[29] T.E. Bell, L. Torrente-Murciano, H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review, Topics in Catalysis, 59 (2016) 1438-1457.
(https://link.springer.com/article/10.1007/s11244-016-0653-4)
[30] M. Hashinokuchi, M. Zhang, T. Doi, M. Inaba, Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells, Solid State Ionics, 319 (2018) 180-185. (https://doi.org/10.1016/j.ssi.2018.02.015)
[31] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, T. Inagaki, Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells, Solid State Ionics, 256 (2014) 1-4.
(https://doi.org/10.1016/j.ssi.2013.12.026)
[32] Y. Shi, N. Cai, C. Li, C. Bao, E. Croiset, J. Qian, Q. Hu, S. Wang, Simulation of electrochemical impedance spectra of solid oxide fuel cells using trasient physical models, J. Electrochem. Soc., 155 (3)(2008) B270-B280. (10.1149/1.2825146)
[33] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,桃園,台灣,2013。
[34] W.G. Bessler, Gas concentration impedance of solid oxide fuel cell anodes I. Stagnation point flow geometry, J. Electrochem. Soc., 153 (2006) A1492-A1504. (https://iopscience.iop.org/article/10.1149/1.2205150/meta)
[35] W.G. Bessler, S. Gewies, Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry, J. Electrochem. Soc., 154 (2007) B548-B559. (https://iopscience.iop.org/article/10.1149/1.2205150)
[36]W.G. Bessler, S. Gewies, M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta, 53 (2007) 1782-1800. (https://doi.org/10.1016/j.electacta.2007.08.030)
[37] S. Gewies, W.G. Bessler, Physically based impedance modeling of Ni/YSZ cermet anode, J. Electrochem. Soc., 155 (2008) B937-B952. (https://iopscience.iop.org/article/10.1149/1.2943411)
[38] R.O. Hayre, S.W. Cha, W. Colella, F.B. Prinzjohn, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons. Inc., New York, 2009.
[39] University of Cambridge, TLP Library,
(http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php)
[40] H. Zhang, W. Liu, Y. Wang, J. Wang, J. Yang, T. Liang, C. Yin, B. Chi, L. Jia, W. Guan, Performance and long-term durability of direct-methane flat-tube solid oxide fuel cell with symmetric double-sided cathodes, Int. J. Hydrogen Energy, 44 (2019) 28947-28957.
(https://doi.org/10.1016/j.ijhydene.2019.09.126)
[41] Y. Ru, J. Sang, C. Xia, W.J. Wei, W. Guan, Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-side cathodes, Int. J. Hydrogen Energy, 48 (2020) 7069-7076.
(https://doi.org/10.1016/j.ijhydene.2019.12.222)
[42] C. Jiang, Y. Gu, W. Guan, J. Zheng, M. Ni, Z. Zhong, 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes, Int. J. Hydrogen Energy, 45 (2020) 904-915.
(https://doi.org/10.1016/j.ijhydene.2019.10.139)
[43] M. Ilbas, B. Kumuk, M. A. Alemu, B. Arslan, Numerical investigation of a direct ammonia tubular solid oxide fuel cell in comparison with hydrogen, Int. J. Hydrogen Energy, 45 (2020) 35108-35117.
(https://doi.org/10.1016/j.ijhydene.2020.04.060)
[44] G. Li, Y. Gou, J. Qiao, W. Sun, Z. Wang, K. Sun, Recent progress of tubular solid oxide fuel cell: From materials to applications, J. Power Sources, 30 (2020) 228693.
(https://doi.org/10.1016/j.jpowsour.2020.228693)
[45] Y.T. Hung, S.S. Shy, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850oC and its loaded short stability test, Int. J. Hydrogen Energy, 45 (2020) 27597-27610.
(https://doi.org/10.1016/j.ijhydene.2020.07.064)
[46] Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan, W. Zhuge, A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks, Appl. Energy, 280 (2020) 115899.(https://doi.org/10.1016/j.apenergy.2020.115899)
[47] E.A. Agarkova, O.Y. Zadorozhnaya, I.N. Burmistrov, D.V. Yalovenko, D.A. Agarkov, S.V. Rabotkin, A.A. Solovyev, Y.K. Nepochatov, M.N. Levin, S.I. Bredikhin, Relationships between mechanical stability of the anode supports and electrochemical performance of intermediate-temperature SOFCs, Mater. Lett., 303 (2021) 130516.
(https://doi.org/10.1016/j.matlet.2021.130516)
[48] M. Ilbas, B. Kumuk, Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model, J. Energy Inst., 92 (2019) 682-692.
(https://doi.org/10.1016/j.joei.2018.03.004)
[49] H. Chang, J. Yang, H. Chen, G. Yang, J. Shi, W. Zhou, F. Cheng, S.D. Li, Z. Shao, Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs, Ceram. Int., 45 (2019) 9866-9870.
(https://doi.org/10.1016/j.ceramint.2019.02.026)
[50] M. Farnak, J.A. Esfahani, S. Bozorgmehri, An experimental investigation on flow-rate effects of internal CPOX reforming in SOFCs, Appl. Therm. Eng., 163 (2019) 114411.
(https://doi.org/10.1016/j.applthermaleng.2019.114411)
[51] J. Kupecki, D. Papurello, A. Lanzini, Y. Naumovich, K. Motylinski, M. Blesznowski, M. Santarelli, Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC), Appl. Energy, 230 (2018) 1573-1584. (https://doi.org/10.1016/j.apenergy.2018.09.092)
[52] C. Schluckner, V. Subotić, S. Preißl, C. Hochenauer, Numerical analysis of flow configuratons and electrical contact positions in SOFC single cells and their impact on local effects, Int. J. Hydrogen Energy, 44 (2019) 1877-1895. (https://doi.org/10.1016/j.ijhydene.2018.11.132) |