博碩士論文 108328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.129.25.104
姓名 劉庭耀(Ting-Yao Liu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氨固態氧化物燃料電池實驗研究
(An Experimental Investigation of Ammonia Solid Oxide Fuel Cell)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對鈕扣型(NiO-YSZ/YSZ/GDC-LSC)固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC),以氨氣為主要燃料,分別對其進行加濕、加氫、改變溫度與陰極流率條件之實驗,藉此研究使用氨氣於不同條件下的電池性能。其中又以加濕氨氣的研究為主要重點,這是為了模擬垃圾掩埋場所產生之氨氮廢水成分,因此本實驗測試加濕氨氣適合在什麼環境下運作可以取得比較好的電池性能,以及探討氨氮廢水是否需要脫水才適合於SOFC使用。本研究使用實驗室已建立之雙腔體高溫高壓爐為主要測試平台,在不同的條件下進行測試。陽極燃料設計了七種不同H2/NH3/H2O/N2之體積濃度比例:(1) H2/N2 (120/80 sccm); (2) H2/H2O/N2 (120/20/60 sccm); (3) NH3/N2 (80/40 sccm); (4) NH3/H2O/N2 (80/20/20 sccm); (5) H2/NH3/N2 (30/60/50 sccm); (6) H2/NH3/H2O/N2 (30/60/20/30 sccm); (7) H2/NH3/H2O/N2 (30/60/40/10 sccm)。而陰極則是固定使用空氣,並以200、400、600、800、1000 sccm等五種不同的空氣體積流率來進行實驗。實驗結果顯示,氨氣與氫氣在添加水氣後性能都會下降,這可能跟陽極燃料體積流率和其反應面積比例有關,此比例越大代表會有剩餘的陽極燃料無法被陽極觸媒反應,而加濕時H2O在高溫的時候會在陽極鎳觸媒上裂解成氫氧根離子,進而佔據三相邊界之反應區域,造成性能下降。另外,本實驗針對氫毒化與H2O之交互影響進行實驗,將相同體積濃度之氫氣、氨氣以三種不同體積濕度(0%, 10%, 20%)進行電池性能與電化學阻抗頻譜量測。結果顯示:在700oC時加濕10%與20%之加氫氨氣的總阻抗都小於未加濕之加氫氨氣,推測是氫毒化被H2O產生之氫氧根部分消除,使得極化阻抗電池可以下降。最後,我們量測陰極流率效應,發現增加陰極流率會造成性能下降,其中歐姆阻抗上升,而極化阻抗下降,但總阻抗是增加的。原因可能是氧離子在三相邊界層過多,進而造成燃料匱乏所致;當陰極流率過高時,會有少部分氧離子到陽極與鎳觸媒結合成氧化鎳增加歐姆阻抗。另一種可能是陰極流率過大,造成電池表面溫度下降使歐姆阻抗上升。再者,H2O可能占據部分鎳觸媒,會進一步使電池性能下降。本研究針對加濕氨氣進行測試研究,其結果對於日後使用垃圾掩埋場所產生之氨氮廢水於SOFC發電應有所幫助。
摘要(英) This thesis investigates experimentally the cell performance of an ammonia button-type solid oxide fuel cell (SOFC) with the consideration of H2 and H2O in anode ammonia fuel at different operating temperatures and cathode air flow rates. We use the highly humidified ammonia gases to simulate the compositions of the ammoniacal nitrogen wastewater from the landfill. Thus, this study tests several different experimental conditions to find out a better cell performance of humidified ammonia-SOFCs and investigates whether the ammoniacal nitrogen wastewater needs to be dehumidified for the usage in SOFC. The experiments are conducted in an already established high temperature, high pressure double-chamber facility. The present anode fuels are designed with seven different H2/NH3/H2O/N2 volume ratios: (1) H2/N2 (120/80 sccm); (2) H2/H2O/N2 (120/20/60 sccm); (3) NH3/N2 (80/40 sccm); (4) NH3/H2O/N2 (80/20/20 sccm); (5) H2/NH3/N2 (30/60/50 sccm); (6) H2/NH3/H2O/N2 (30/60/20/30 sccm); (7) H2/NH3/H2O/N2 (30/60/40/10 sccm). In the cathode, we use air at five different flow rates, i.e. 200, 400, 600, 800, 1000 sccm. Results show that both hydrogen and ammonia cell performances decrease when doping with H2O. This may be attributed to the ratio of the anode flow rate and the effective area of anode surface, as hydroxyl radicals produced by H2O at high temperature can occupy the anode catalysts and suppress the electrochemical reactions of hydrogen and ammonia. This thesis also explores the possible relation between hydrogen poisoning and H2O addition in anode. By using the electrochemical impedance spectra (EIS), we obtain that when T = 700oC, the cases of (6) and (7) with the humidity of 10% and 20% have smaller total resistances as compared with the case of (5) with 0% humidity. It is thought that hydrogen poisoning can be eliminated partially by hydroxyl radicals. At last, we test the effect of cathode flow rate on the cell performance. The result surprises us that when we raise the cathode flow rate, the cell performance decreases. This situation may be caused by the “fuel starvation” in the anode; if sufficient oxygen ions come to the three-phase boundary on the anode side. Another possible reason may be cause by the excess cathode flow rate, it reduces the cell temperature and increases the ohmic resistance. It becomes more severe when doping H2O because hydroxyl radicals can occupy the anode catalyst nickel. Finally, these results may be of help for the possible usage of the ammoniacal nitrogen wastewater produced from the landfill in ammonia SOFC.
關鍵字(中) ★ 氨氣固態氧化物燃料電池
★ 添加水氣、氫氣
★ 改變陰極流率
★ 改變溫度
關鍵字(英) ★ Ammonia SOFC
★ H2 and H2O addition
★ the effect of operating temperature
★ the effect of cathode flow rate
論文目次 摘要 i
Abstract iii
誌謝 i
目錄 vi
圖目錄 ix
表目錄 xi
符號說明 xii
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 3
1.3 研究方法 6
1.4 論文綱要 6
第二章 燃料電池之簡介與文獻回顧 7
2.1 SOFC之簡介 7
2.2 SOFC原理與極化現象 14
2.2.1 歐姆極化 17
2.2.2 活化極化 17
2.2.3 濃度極化 18
2.4 電化學阻抗頻譜與等效電路模組 19
2.5氨氣固態氧化物燃料電池相關文獻 25
2.5.1 氨氣加濕的相關研究 28
2.5.2 添加氫氣對以氨氣為主之SOFC的影響 30
2.5.3 不同材質對氨氣SOFC的影響 31
第三章 實驗設備與量測方式 34
3.1固態氧化物燃料電池測試平台 34
3.2 實驗流程操作與量測參數設定 41
第四章 結果與討論 45
4.1 加濕對氨氣性能之影響 45
4.2 氨氣燃料混入氫氣對性能之影響 49
4.3 濕度對氫毒化之氨氣燃料性能影響 52
4.4陰極流率對氨氣的影響 57
第五章 結論與未來工作 66
5.1 結論 66
5.1.1 加濕氨氣SOFC電池性能量測 66
5.1.2 加氫氨氣SOFC電池性能量測 66
5.1.3 加濕與氫毒化對氨氣SOFC的交互影響 67
5.1.4 陰極流率效應 67
5.2 未來工作 68
參考文獻 69
參考文獻 [1] H. Ritchie, M. Roser, Fossil Fuels, (https://ourworldindata.org/fossil-fuels)

[2] A. Choudhury, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation–A review, Renewable Sustainable Energy Rev., 20 (2013) 430-442.(https://doi.org/10.1016/j.rser.2012.11. 031)

[3] A.F.S. Molouk, T.Okanishi, H.Muroyama, T.Matsui, K.Eguchi, Electrochemical and Catalytic Behaviors of Ni–YSZ Anode for the Direct Utilization of Ammonia Fuel in Solid Oxide Fuel Cells, J. Electrochem. Soc., 162 (10)(2015) F1268-1274.
(http://dx.doi.org/10.1149/2.1011510jes)

[4] A. Fuerte, R.X. Valenzuela, M.J. Escudero, L. Daza, Ammonia as efficient fuel for SOFC, J. Power Sources, 192 (1)(2009) 170-174.
(https://doi.org/10.1016/j.jpowsour.2008.11.037)

[5] 李雪茹,加壓型SOFC陰極半電池實驗研究,碩士論文,國立中央大學,桃園,台灣,2013。

[6] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,桃園,台灣,2014。

[7] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,桃園,台灣,2015。

[8] 洪立翰,合成氣於加壓型SOFC之性能量測與其為氣渦輪機複合系統之模擬,碩士論文,國立中央大學,桃園,台灣,2015。
[9]洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,桃園,台灣,2016。

[10]呂育緯,熱循環、添加氫氣、加壓效應還原氮化鎳對平板型氨氣SOFCs之效應,碩士論文,國立中央大學,桃園,台灣,2020。

[11] B. Stoeckl, M. Preininger, V. Subotić, S. Megel, C. Folgner, C. Hochenauer, Towards a wastewater energy recovery system: The utilization of humidified ammonia by a solid oxide fuel cell stack, J. Power Sources, 450 (2020) 227608.
(https://doi.org/10.1016/j.jpowsour.2019.227608)

[12] B. Stoeckl, M. Preininger, V. Subotić, C. Gaber, M. Seidl, P. Sommersacher, H. Schroettner, C. Hochenauer, High Utilization of Humidified Ammonia and Methane in Solid Oxide Fuel Cells: An Experimental Study of Performance and Stability, J. Electrochem. Soc., 166 (12)(2019) F774-F783.(http://dx.doi.org/10.1149/2.0781912jes)

[13] G. Cinti, G. Discepoli, E. Sisani, U. Desideri, SOFC operating with ammonia: Stack test and system analysis, Int. J. Hydrogen Energy, 41 (2016) 13583-13590.(https://doi.org/10.1016/j.ijhydene.2016.06.070)

[14] M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, K. Eguchi, Development of 1 kW-class Ammonia-
fueled Solid Oxide Fuel Cell Stack, Fuel Cell, 20 (2020) 80-88.
(https://doi.org/10.1002/fuce.201900131)

[15] R.A. Budiman, T. Ishiyama, K.D. Bagarinao, H. Kishimoto, K Yamaji, T. Horita, Dependence of hydrogen oxidation reaction on water vapor in anode-supported solid oxide fuel cells, Solid State Ionics, 362 (2021) 115565.( https://doi.org/10.1016/j.ssi.2021.115565)

[16] V.A.C. Haanappel, M.J. Smith, A review of standarding SOFC measurement and quality assurance at FZJ, J. Power Sources, 171 (1)(2007) 169-178.(https://doi.org/10.1016/j.jpowsour.2006.12.029)

[17] Y. Wang, Y. Gu, H. Zhang, J. Yang, J. Wang, W.Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, Z. Zhong, Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells, Appl. Energy, 270 (2020) 115185.
(https://doi.org/10.1016/j.apenergy.2020.115185)

[18] A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102.
(https://doi.org/10.1016/j.pecs.2018.07.001)

[19] H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Prog. Nat. Sci.: Mater. Int., 30(6)(2020) 764-774. (https://doi.org/10.1016/j.pnsc.2020.09.003)

[20] K.H. Ng, H.A. Rahman, M.R. Somalu, Review: Enhancement of composite anode materials for low-temperature solid oxide fuels, Int. J. Hydrogen Energy, 44 (58)(2018) 30692-30704.
(https://doi.org/10.1016/j.ijhydene.2018.11.137)

[21] K. Nozawa, H. Orui, T. Komatsu, R. Chiba, H. Arai, Development of Highly Efficient Planar Solid Oxide Fuel Cells, NTT Energy and Environment Systems Laboratories, 6 (2008) 1-8.
(https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200802 sf4.html)

[22]W. Chanpeng, Y. Khunatorn, The effect of the input load current changed to a 1.2kW PEMFC performance, Energy Procedia, 9 (2011) 316-325. (https://doi.org/10.1016/j.egypro.2011.09.034)

[23] K. Miyazaki, H. Muroyama, T. Matsui, K. Eguchi, Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells, Sustainable Energy Fuels, 4 (2020) 5238-5246.
(10.1039/D0SE00841A)

[24] J. Yang, T. Akagi, T. Okanshi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic Influence of Oxide Component in Ni-Based Cermet Anodes for Ammonia-Fueled Solid Oxide Fuel Cells, Fuel Cells, 15 (2015) 390-397.
(https://doi.org/10.1002/fuce.201400135)

[25] G. Chen, X. Zhang, Y. Lui, Y. He, H. Liu, S. Geng, K. Yu, Y. Dong, Ionic conduction mechanism of a nanostructured BCY electrolyte for low-temperature SOFC, Int. J. Hydrogen Energy, 45 (2020) 24108-24115.
(https://doi.org/10.1016/j.ijhydene.2019.07.223)

[26] Y. Wang, Y. Gu, H. Zhang, J. Wang, W. Guan, J. Chen, B. Chi, L. Jia, H. Muroyama, T. Matsui, K. Eguchi, Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells, Appl. Energy, 270 (2020) 115185.
(https://doi.org/10.1016/j.apenergy.2020.115185)

[27] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3-δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells, ACS Applied Materials & Interface, 7 (2015) 7406-7412.
(http://dx.doi.org/10.1021/acsami.5b01048)

[28] A. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Behavior of Ni-Based Cermet Anode for Ammonia-Fueled SOFCs, ECS Transactions, 68 (2015) 2751-2762. (https://iopscience.iop.or g/article/10.1149/06801.2751ecst)

[29] T.E. Bell, L. Torrente-Murciano, H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review, Topics in Catalysis, 59 (2016) 1438-1457.
(https://link.springer.com/article/10.1007/s11244-016-0653-4)

[30] M. Hashinokuchi, M. Zhang, T. Doi, M. Inaba, Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells, Solid State Ionics, 319 (2018) 180-185. (https://doi.org/10.1016/j.ssi.2018.02.015)

[31] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, T. Inagaki, Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells, Solid State Ionics, 256 (2014) 1-4.
(https://doi.org/10.1016/j.ssi.2013.12.026)

[32] Y. Shi, N. Cai, C. Li, C. Bao, E. Croiset, J. Qian, Q. Hu, S. Wang, Simulation of electrochemical impedance spectra of solid oxide fuel cells using trasient physical models, J. Electrochem. Soc., 155 (3)(2008) B270-B280. (10.1149/1.2825146)

[33] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,桃園,台灣,2013。

[34] W.G. Bessler, Gas concentration impedance of solid oxide fuel cell anodes I. Stagnation point flow geometry, J. Electrochem. Soc., 153 (2006) A1492-A1504. (https://iopscience.iop.org/article/10.1149/1.2205150/meta)

[35] W.G. Bessler, S. Gewies, Gas concentration impedance of solid oxide fuel cell anodes II. Channel geometry, J. Electrochem. Soc., 154 (2007) B548-B559. (https://iopscience.iop.org/article/10.1149/1.2205150)

[36]W.G. Bessler, S. Gewies, M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta, 53 (2007) 1782-1800. (https://doi.org/10.1016/j.electacta.2007.08.030)

[37] S. Gewies, W.G. Bessler, Physically based impedance modeling of Ni/YSZ cermet anode, J. Electrochem. Soc., 155 (2008) B937-B952. (https://iopscience.iop.org/article/10.1149/1.2943411)

[38] R.O. Hayre, S.W. Cha, W. Colella, F.B. Prinzjohn, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons. Inc., New York, 2009.

[39] University of Cambridge, TLP Library,
(http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php)



[40] H. Zhang, W. Liu, Y. Wang, J. Wang, J. Yang, T. Liang, C. Yin, B. Chi, L. Jia, W. Guan, Performance and long-term durability of direct-methane flat-tube solid oxide fuel cell with symmetric double-sided cathodes, Int. J. Hydrogen Energy, 44 (2019) 28947-28957.
(https://doi.org/10.1016/j.ijhydene.2019.09.126)

[41] Y. Ru, J. Sang, C. Xia, W.J. Wei, W. Guan, Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-side cathodes, Int. J. Hydrogen Energy, 48 (2020) 7069-7076.
(https://doi.org/10.1016/j.ijhydene.2019.12.222)

[42] C. Jiang, Y. Gu, W. Guan, J. Zheng, M. Ni, Z. Zhong, 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes, Int. J. Hydrogen Energy, 45 (2020) 904-915.
(https://doi.org/10.1016/j.ijhydene.2019.10.139)

[43] M. Ilbas, B. Kumuk, M. A. Alemu, B. Arslan, Numerical investigation of a direct ammonia tubular solid oxide fuel cell in comparison with hydrogen, Int. J. Hydrogen Energy, 45 (2020) 35108-35117.
(https://doi.org/10.1016/j.ijhydene.2020.04.060)

[44] G. Li, Y. Gou, J. Qiao, W. Sun, Z. Wang, K. Sun, Recent progress of tubular solid oxide fuel cell: From materials to applications, J. Power Sources, 30 (2020) 228693.
(https://doi.org/10.1016/j.jpowsour.2020.228693)

[45] Y.T. Hung, S.S. Shy, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850oC and its loaded short stability test, Int. J. Hydrogen Energy, 45 (2020) 27597-27610.
(https://doi.org/10.1016/j.ijhydene.2020.07.064)

[46] Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan, W. Zhuge, A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks, Appl. Energy, 280 (2020) 115899.(https://doi.org/10.1016/j.apenergy.2020.115899)



[47] E.A. Agarkova, O.Y. Zadorozhnaya, I.N. Burmistrov, D.V. Yalovenko, D.A. Agarkov, S.V. Rabotkin, A.A. Solovyev, Y.K. Nepochatov, M.N. Levin, S.I. Bredikhin, Relationships between mechanical stability of the anode supports and electrochemical performance of intermediate-temperature SOFCs, Mater. Lett., 303 (2021) 130516.
(https://doi.org/10.1016/j.matlet.2021.130516)

[48] M. Ilbas, B. Kumuk, Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model, J. Energy Inst., 92 (2019) 682-692.
(https://doi.org/10.1016/j.joei.2018.03.004)

[49] H. Chang, J. Yang, H. Chen, G. Yang, J. Shi, W. Zhou, F. Cheng, S.D. Li, Z. Shao, Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs, Ceram. Int., 45 (2019) 9866-9870.
(https://doi.org/10.1016/j.ceramint.2019.02.026)

[50] M. Farnak, J.A. Esfahani, S. Bozorgmehri, An experimental investigation on flow-rate effects of internal CPOX reforming in SOFCs, Appl. Therm. Eng., 163 (2019) 114411.
(https://doi.org/10.1016/j.applthermaleng.2019.114411)

[51] J. Kupecki, D. Papurello, A. Lanzini, Y. Naumovich, K. Motylinski, M. Blesznowski, M. Santarelli, Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC), Appl. Energy, 230 (2018) 1573-1584. (https://doi.org/10.1016/j.apenergy.2018.09.092)

[52] C. Schluckner, V. Subotić, S. Preißl, C. Hochenauer, Numerical analysis of flow configuratons and electrical contact positions in SOFC single cells and their impact on local effects, Int. J. Hydrogen Energy, 44 (2019) 1877-1895. (https://doi.org/10.1016/j.ijhydene.2018.11.132)
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明