博碩士論文 108522050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.137.169.215
姓名 賴映如(Ying-Ru Lai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於深度學習之盲人穿搭輔助系統
(A Deep-learning-based Outfit Improvement System for Visually Impaired Persons)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 基於檢驗數值的糖尿病腎病變預測模型
★ 模糊類神經網路為架構之遙測影像分類器設計★ 複合式群聚演算法
★ 身心障礙者輔具之研製★ 指紋分類器之研究
★ 背光影像補償及色彩減量之研究★ 類神經網路於營利事業所得稅選案之應用
★ 一個新的線上學習系統及其於稅務選案上之應用★ 人眼追蹤系統及其於人機介面之應用
★ 結合群體智慧與自我組織映射圖的資料視覺化研究★ 追瞳系統之研發於身障者之人機介面應用
★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用★ 基因演算法於語音聲紋解攪拌之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 視障者在日常生活常常會面臨許多的困難,尤其在衣著方面,他 們除了難以自行得知衣物布料的顏色、花紋和款式等資訊之外,要如 何適切地掌握衣物間互相的搭配更是個挑戰。因此,如何使視障者能 在無旁人輔助的狀態下,瞭解目前全身衣物的布料資訊,並對其色彩 與花紋搭配合適程度有所認知,避免因缺乏資訊而穿著突兀或不適當, 是個重要的研究課題。因此,本論文結合深度學習與影像處理技術來 開發一套盲人穿搭輔助系統,幫助視障者了解選用的衣物資訊與搭配合宜度。
本篇論文系統主要包含以下四個模組: (1) 骨架偵測模組: 使用 OpenPose 模型偵測與提醒拍攝是否為完整正面全身照、(2) 肢體偵測 與切割處理模組: 透過CDCLHuman-Part-Segmentation模型取得肢體 遮罩,並依據相對應欲判斷衣物部位做聚焦切割處理、(3) 衣物特徵 辨識模組: 以深度學習技術訓練模型辨識衣物資訊與布料樣式、(4) 布料色系與飽和度辨識模組: 透過影像處理識別布料的顏色資訊。綜 合上述四部分之模組功能,在取得衣物特徵、布料色系與花紋樣式等資訊後,系統透過語音提示的方式來輔助視障者能夠獨立了解他們選用的各衣物特徵,並給予穿搭參考建議,希望使他們能對於衣物搭配 組合後的效果更有概念和依據,同時保有自己對搭配美感的彈性。
根據系統實驗結果顯示,三種衣物特徵以及布料款式辨識率皆在 95%以上,色系分類準確率達 87%,搭配結果建議與市調相符度約達 77.6%,由此可證明本系統具備一定程度之可用性。
摘要(英) The visually impaired people face many difficulties in daily life, especially in clothing identification and matching. In addition to having difficulty in independently knowing the color, pattern, style and other information of clothing fabrics, it is also a challenge for them to match each other well. Therefore, how to let the visually impaired understand the fabric information what they are wearing, and the suitability of the color and pattern of their clothes without the help of others, so as to avoid conflicts or unexpected clothes matching caused by insufficient information, is an important research topic. This research uses deep learning and image processing technology to develop an outfit improvement system in order to help the visually impaired understand the information about their clothes and improve the outfit collocation.
The deep-learning-based outfit improvement system developed in this paper mainly includes: (1) Skeleton detection: Use the OpenPose model to detect and remind the user whether the photo is a frontal full-body photo, (2) Human body part detection and segmentation processing: Obtain the human body mask through the CDCL Human-Part-Segmentation model, and perform focus cutting processing according to the corresponding parts of the clothing that need to be judged, (3) Clothing feature recognition: Use deep learning technology to train the model to recognize clothing information and fabric styles, (4) Recognition of fabric color system and saturation: Recognize the color information of fabric through image processing.
Through the functions of the above four parts, after obtaining clothing features and fabric color system and pattern style information, voice prompts will be used to assist the visually impaired to independently understand the features of each clothing they choose, and to give non-absolute wear reference suggestions to help them have a more conceptual and basis for the effect of clothing collocation and combination, while maintaining their flexibility in the beauty of collocation.
According to the system experiment results, the accracy of three kinds of clothing features and fabric styles has all reached more than 95%, the color classification accuracy rate is 87%, and the match between the recommended matching results and the taste of the general public is 77.6%, which can prove that the system has a certain degree of usability.
關鍵字(中) ★ 深度學習
★ 影像辨識
★ 色彩配色
★ 視障者
關鍵字(英) ★ deep learning
★ image recognition
★ color combination
★ visually impaired
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章、緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 論文架構 3
第二章、相關研究 4
2-1 穿搭辨識與推薦 4
2-1-1 盲人穿搭輔具 4
2-1-2 服裝辨識與搭配相關研究 6
2-2 色彩與穿搭美學 10
2-2-1 色彩系統 10
2-2-2 色彩配色與服裝搭配 11
2-3 深度學習相關研究 13
2-3-1 ResNet 13
2-3-2 EfficientNet 16
2-3-3 OpenPose 20
2-3-4 Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation 22
第三章、研究方法 25
3-1 演算流程 25
3-2 肢體偵測 26
3-3 衣物特徵辨識 29
3-4 布料樣式與色系判別 31
3-4-1 布料資料前處理 31
3-4-2 布料樣式判別 33
3-4-3 布料色系與飽和度判別 34
3-5 穿搭結果評估 36
第四章、實驗設計與結果 37
4-1 肢體偵測實驗 37
4-1-1 資料集調整實驗 37
4-1-2 資料集調整實驗結果與分析 38
4-1-3 肢體偵測實驗 39
4-2 衣物特徵辨識實驗 41
4-2-1 下身種類辨識實驗 42
4-2-2 上衣袖長辨識實驗 44
4-2-3 外套辨識實驗 46
4-3 布料樣式與色系分類實驗 47
4-3-1 布料樣式實驗 48
4-3-2 布料色系與飽和度實驗 50
4-4 穿搭結果評估 52
4-4-1 穿搭評估實驗設計 52
4-4-2 穿搭評估實驗結果與分析 53
第五章、結論與未來展望 56
5-1 結論 56
5-2 未來展望 57
參考文獻 58
附錄A 62
參考文獻 [1] C. Willings, "Teaching Students with Visual Impairments - Dressing & Clothing Management," Teaching Students with Visual Impairments LLC, 7 4 2020. [Online]. Available: https://www.teachingvisuallyimpaired.com/dressing--clothing-management.html.
[2] CSR環球網, "盲文服裝標籤:touch color," [Online]. Available: https://kknews.cc/zh-tw/culture/g3vkpa8.html.
[3] PBC, ELIA Life Technology, "the ELIA idea," ELIA Life Technology PBC, [Online]. Available: http://www.theeliaidea.com/press.
[4] Colorino, "Colorino Color Identifier – Light Detector," 5 Jul. 2016. [Online]. Available: https://www.eastersealstech.com/2016/07/05/colorinos-color-identifier-light-detector/.
[5] BBC, "Heriot-Watt student designs ′tactile tartan′," 3 Sep. 2018. [Online]. Available: https://www.bbc.com/news/uk-scotland-south-scotland-45397125.
[6] X. Yang, S. Yuan, and Y. Tian, "Assistive Clothing Pattern Recognition for Visually Impaired People," IEEE Transaction on Human-machine Systems., vol. 44, no. 2, Apr. 2014.
[7] D. Lowe, "Distinctive image features from scale- invariant keypoints," Int. J. Comput. Version, vol. 60, no. 2, p. 91–110, 2004.
[8] S. Hidayati, W. Cheng, and K. Hua, "Clothing genre classification by exploiting the style elements," Proc. ACM Int. Conf. Multimedia, p. 1137–1140, 2012.
[9] A. J. Medeiros, L. Stearns, L. Findlater, C. Chen, and J. E. Froehlich, "Recognizing Clothing Colors and Visual Textures Using a Finger-Mounted Camera: An Initial Investigation," Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility - ASSETS ′17, 2017.
[10] L. Liua, H. Zhanga, YuzhuJia, and Q.M. Wub, "Toward AI fashion design: An Attribute-GAN model for clothing match," Neurocomputing, vol.341, pp. 156-167, 2019.
[11] "OpenCV," [Online]. Available: https://opencv.org/. [Accessed Jun. 2018].
[12] 時尚的小夥伴, "時尚女人,穿搭不會超過三種色系!記住這技巧,簡潔中穿出高雅感," 每日頭條 - 時尚, 2019.
[13] K. E. Burchett, "Color Harmony Attributes," Color, Research & Application, vol. 16, pp. 6-17, 1996.
[14] 林文昌, 歐秀明, 服裝色彩學, 1992.
[15] 八妹, "服裝搭配離不開顏色,穿衣色彩學你懂多少?," 3 Dec. 2016. [Online].
[16] 《大紀元》, "【小妙招】服裝顏色搭配原則與禁忌," 31 Mar. 2012. [Online]. Available: https://www.epochtimes.com/b5/11/10/27/n3413514.htm.
[17] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016.
[18] M. Tan, and Q. V. Le, "Mingxing Tan, Quoc V.Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," arXiv, May 2019.
[19] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, "Regularized evolution for image classifier architecture search," AAAI, 2019.
[20] Q. Xie, M. Luong, E. Hovy and Q. V. Le, "Self-Training With Noisy Student Improves ImageNet Classification," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13-19 Jul. 2020.
[21] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y.Sheikh, "OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.43, Issue: 1, 17 Jul. 2019.
[22] K. Lin, L. Wang, K. Luo, Y. Chen, Z. Liu, and M.-T. Sun, "Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, Issue: 3), 15 5 2020.
[23] Y. Ge, R. Zhang, X. Wang, X.Tang, and P. Luo, "DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. pp. 15-20, Jun. 2019.
[24] 百度文庫, "HSV基本顏色分量範圍," [Online].
[25] plain-me樸然子股份有限公司, "https://blog.plain-me.com/2019/06/18020/," 21 6 2019. [Online].
[26] L. C. Wang, X. Y. Zeng, L. Koehl, and Y. Chen, "Intelligent Fashion Recommender System: Fuzzy Logic in Personalized Garment Design," IEEE Transactions on Human-Machine Systems, vol.45, Issue: 1, Feb. 2015.
指導教授 蘇木春(Mu-Chun Su) 審核日期 2022-4-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明