博碩士論文 107521039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.119.139.50
姓名 榮志堯(JUNG, CHIH-YAO)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於穿戴式生醫電子之使用內置時脈產生器非同步全差動十一位元連續漸進式類比數位轉換器
(An 11-bit Fully Differential Asynchronous SAR ADC with the Internal Clock Generator for Biomedical Wearable Device)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-3-20以後開放)
摘要(中) 隨著人口結構逐漸老化,老年及長照人口的即時醫療監控需求越來越高,因此近年來穿戴式裝置興起,市面上出現越來越多可攜式生醫電子產品。此外,近年來養生與健身風氣的盛行,一般民眾對於了解自身生理狀況也越來越重視,對於量測並分析自身心跳、血壓與血氧等數據的需求也逐漸增高。人體的生理訊號一般而言都極其微小,且各種生理訊號的頻寬不盡相同,如何在不受雜訊影響下,放大與分析生理訊號在生醫感測系統中極其重要。綜合以上因素,本電路以低功耗、低成本、易整合為設計的目標。
本論文實現一應用於生醫訊號感測之類比數位轉換器(Analog-to-digital converter, ADC),此類比數位轉換器使用非同步時脈(Asynchronous clock)連續漸進式架構(Successive-approximation, SAR)來增加前端類比電路(Analog fount-end, AFE)追蹤時間並且提高全差動輸入以利提升整體系統的訊號雜訊比。在低頻寬(10 MHz以下)與中等解析度(10 ~ 14 bits)的應用中,連續漸進類比數位轉換器在功率消耗方面優於積分三角類比數位轉換器(Sigma Delta ADC)。使用非同步時脈可以在較寬的取樣頻率範圍內,實現一致的性能與較低的功率消耗。其可調取樣頻率範圍可應用於腦波訊號(Electroencephalography, EEG)、心電訊號(Electrocardiography, ECG)及眼電訊號(Electrooculogram, EOG)等生理訊號檢測。使用內置時脈產生器的架構與傳統應用於高速連續漸進式類比數位轉換器的延遲線架構相比,內置時脈產生器可以在較低的頻率下操作。全差動輸入可以抵消前端類比電路的直流偏移,降低製程、電壓與溫度對系統的影響。
本論文採用TSMC 0.18 um CMOS標準製程,晶片面積0.680 mm2 (含ESD I/O PAD),電源電壓1.2 V,通常取樣率400sps,最高取樣率可達10ksps。輸入電壓範圍300mV ~ 900mV,11位元解析度。當取樣頻率為10ksps時,整體電路功耗為1.7 µW,核心電路功耗為932 nW。
摘要(英) With the gradual aging of the population structure, there is an increasing demand for real-time medical monitoring of the elderly and long-term care groups. Consequently, more and more portable biomedical electronic products have come out. In recent years, the trend of health preservation and fitness has become more and more important for the public to understand their physical condition. The demand for the measurement and analysis of heartbeat, blood pressure, blood oxygen and other data is gradually increasing. Since the physiological signals of the human body are generally very small, and the bandwidths of various physiological signals are not the same, how to fully amplify and analyze the signals without being affected by noise is the main requirement of the biomedical sensor system. Therefore, the circuit design aims at low power consumption, low cost, and easy integration.
This thesis presents an implementation of a fully differential asynchronous successive-approximation analog-to-digital converter (SAR ADC) applied to biomedical signal sensing. By increasing the analog front-end circuit tracing time and fully differential input, improving the signal-to-noise ratio of the entire system is achieved. In applications with low bandwidth (less than 10 MHz) and medium resolution (10 to 14 bits), the SAR ADC is superior to the Sigma-Delta ADC in terms of power consumption. Using asynchronous clocks can achieve consistent performance and lower power consumption within a wide range of sampling frequencies. Its adjustable sampling frequency can be applied to the detection of physiological signals such as electroencephalogram (EEG), electrocardiogram (ECG) and electrooculogram (EOG). Compared with the conventional delay line architecture used in the high-speed SAR ADC, the architecture using the internal clock generator can operate at low frequency. The fully differential input can cancel DC offset of the front-end analog circuit and reduce variation of process, voltage and temperature on the system.
This work used TSMC 0.18 UM CMOS Mixed Signal RF General Purpose MiM FSG Al 1P6M 1.8&3.3 V process, the chip area is 0.680 mm2 (including ESD I/O PAD), supply voltage is 1.2 V. Input voltage range is 300 mV ~ 900 mV, 11-bit resolution, typical sampling rate is 400 S/s, and highest sampling rate is 10 kS/s. When the sampling frequency is 10 kS/s, whole chip power consumption is 1.7 µW, and the core circuit power consumption is 932 nW.
關鍵字(中) ★ 連續漸進式類比數位轉換器
★ 類比數位轉換器
★ 穿戴式生醫電子
★ 時脈產生器
★ 非同步
關鍵字(英) ★ SAR ADC
★ ADC
★ Biomedical Wearable Device
★ Clock Generator
★ Asynchronous
論文目次 摘要 i
Abstract ii
致謝 iv
圖目錄 vii
表目錄 xiii
第1章、 緒論 1
1-1 研究背景 1
1-2 研究動機 1
1-3 論文貢獻 2
第2章、 類比數位轉換器架構概論 3
2-1 類比數位轉換器架構介紹 3
2-1-1 快閃類比數位轉換器[4] 7
2-1-2 管線式類比數位轉換器[5-7] 8
2-1-3 三角積分類比數位轉換器[8, 9] 9
2-1-4 連續漸進式類比數位轉換器[1, 10] 10
2-2 訊號分析 10
2-2-1 相關取樣 11
2-2-1 非相關取樣 12
2-2-2 窗函數 13
2-3 類比數位轉換器基本參數 20
2-3-1 靜態參數 20
2-3-2 動態參數 24
第3章、 非同步全差動十一位元連續漸進式類比數位轉換器 26
3-1 系統架構 26
3-2 規格 27
3-3 電容陣列 28
3-3-1 單位電容大小 28
3-3-2 電容切換模式 30
3-4 比較器 33
3-5 時脈產生電路 37
3-6 靴帶式取樣保持電路 40
第4章、 佈局與模擬結果 43
4-1 電容陣列佈局 43
4-2 佈局平面圖 46
4-3 模擬結果 48
4-3-1 SAR ADC 靜態參數 49
4-3-2 SAR ADC 動態參數 @ 400 S/s 51
4-3-3 SAR ADC 動態參數 @ 10 kS/s 57
第5章、 量測 63
5-1 量測考量 63
5-2 量測結果 69
第6章、 結論 88
6-1 文獻比較 88
6-2 未來展望 88
參考文獻 89
參考文獻 [1] J.-Y. Tu, "A Design of Low-Power Analog Front End with Programmable-Gain Low-Noise Amplifier and Successive-Approximation ADC for Biomedical Applications," Master, Department of Electrical Engineering, National Central University, 2016. [Online] https://hdl.handle.net/11296/ctn8k6
[2] W. Kester. "Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care." Analog Devices, Inc. https://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf.
[3] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design. John Wiley & Sons, 2012.
[4] S. Weaver, B. Hershberg, and U. Moon, "Digitally Synthesized Stochastic Flash ADC Using Only Standard Digital Cells," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, pp. 84-91, 2014.
[5] A. M. Abo and P. R. Gray, "A 1.5 V, 10-bit, 14 MS/s CMOS pipeline analog-to-digital converter," in 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215), 11-13 June 1998 1998, pp. 166-169, doi: 10.1109/VLSIC.1998.688071.
[6] M. Chu, B. Kim, and B. Lee, "A 10-bit 200-MS/s Zero-Crossing-Based Pipeline ADC in 0.13-um CMOS Technology," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 11, pp. 2671-2675, 2015.
[7] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, "An 8-bit 200-MSample/s Pipelined ADC With Mixed-Mode Front-End S/H Circuit," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1430-1440, 2008.
[8] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Canada: John Wiley & Sons, 2005.
[9] G.-S. Li, "A Low-Power Continuous-Time Delta-Sigma ADC with Low Noise Low Voltage Supply Bandgap Reference Voltage and RC Time-Constant Calibration Technique for Biomedical Systems," Master, Department of Electrical Engineering, National Central University, 2017.
[10] C. Liu, S. Chang, G. Huang, and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, 2010.
[11] L. Chioye and A. Kay. "Fast Fourier Transforms (FFTs) and Windowing." Texas Instruments. https://training.ti.com/sites/default/files/docs/adcs-fast-fourier-transforms-and-windowing-presentation-quiz.pdf.
[12] H. H. Albrecht, "A family of cosine-sum windows for high-resolution measurements," in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 7-11 May 2001 2001, vol. 5, pp. 3081-3084 vol.5, doi: 10.1109/ICASSP.2001.940309.
[13] Y. Ho, C. Chang, and C. Su, "Design of a Subthreshold-Supply Bootstrapped CMOS Inverter Based on an Active Leakage-Current Reduction Technique," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 1, pp. 55-59, 2012.
[14] "AD8138 Data Sheet." Analog Devices Inc. https://www.analog.com/media/en/technical-documentation/data-sheets/AD8138.pdf.
[15] D. Zhang, A. Bhide, and A. Alvandpour, "A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-um CMOS for Medical Implant Devices," IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1585-1593, 2012.
[16] M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, "A 14 b 35 MS/s SAR ADC Achieving 75 dB SNDR and 99 dB SFDR With Loop-Embedded Input Buffer in 40 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2891-2900, 2015.
[17] D. Zhang and A. Alvandpour, "A 12.5-ENOB 10-kS/s Redundant SAR ADC in 65-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 3, pp. 244-248, 2016.
[18] S. Choi, H. Ku, H. Son, B. Kim, H. Park, and J. Sim, "An 84.6-dB-SNDR and 98.2-dB-SFDR Residue-Integrated SAR ADC for Low-Power Sensor Applications," IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 404-417, 2018.
[19] W. Mao, Y. Li, C. Heng, and Y. Lian, "A Low Power 12-bit 1-kS/s SAR ADC for Biomedical Signal Processing," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 477-488, 2019.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2022-3-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明