博碩士論文 108521072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.191.216.163
姓名 張瓊文(Chiung-Wen Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以CMOS/GaAs/GaN製程實現之應用於n79頻段J類寬頻功率放大器
(Implementations on Class-J Wideband Power Amplifiers in CMOS/GaAs/GaN Technologies for n79 Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分別使用tsmc^TM 0.18 μm CMOS、穩懋WINTM 0.15-µm GaAs與0.25-µm GaN三種製程,設計同為操作於n79頻段之J類功率放大器。第二章會先探討n79頻段J類功率放大器,此架構會於之後章節,分別實現在三種不同製程之電路。
第三章提出應用tsmc^TM 0.18 μm CMOS製程於n79頻帶之J類功率放大器,電路設計採全積體化之兩層堆疊電晶體結構,量測結果為3-dB頻寬為3.0-5.8 GHz,在n79頻帶內,飽和效率皆大於35%,最大傳輸增益為14.06 dB,飽和輸出功率為20.13 dBm,1-dB 增益壓縮點輸出功率為17.06 dBm,晶片面積為1.2 (1.097 × 1.094) mm2。
第四章提出應用WINTM 0.15-µm GaAs製程於n79頻帶之J類功率放大器,電路設計採全積體化之兩級共源極電路架構,量測結果為3-dB頻寬為3.8 – 5.7GHz,在n79頻帶內,飽和效率皆大於35%,最大傳輸增益為25.42 dB,飽和輸出功率為23.43 dBm,1-dB 增益壓縮點輸出功率為22.34 dBm,晶片面積為1.5 (1.5 × 1.0) mm2。
第五章提出應用WINTM 0.25-µm GaN製程於n79頻帶之J類功率放大器,電路設計採全積體化之兩級共源極電路架構,量測結果為3-dB頻寬為3.1 – 5.3 GHz,在n79頻帶內,飽和效率皆大於40%,最大傳輸增益為24.56 dB,飽和輸出功率為38.33 dBm,1-dB 增益壓縮點輸出功率為25.16 dBm,晶片有效面積為3.57 (2.223 × 1.606) mm2。第六章為結論,並且比較三種製程各別之優缺點。
摘要(英) The thesis developed three Class J power amplifiers that were designed in tsmc^TM 0.18-µm CMOS, WINTM 0.15-µm GaAs, and WINTM 0.25-μm GaN all for n79-band operations. The second chapter will firstly discuss the n79 band class J power amplifier. This implemented topology in three different process will be addressed in the following chapters.
The third chapter proposes a class J power amplifier using tsmc^TM 0.18-μm CMOS process in n79 frequency band. The circuit design adopted a fully integrated two-stacked FET structure. The amplifier achieves a 3-dB bandwidth from 3.0 to 5.8 GHz with small signal gain of 14.06 dB, the peak power added efficiency (PAE) is higher than 35% in n79 band. Continuous Wave (CW) measurements demonstrate a maximum saturated output power of 20.13 dBm and an OP1dB of 17.06 dBm, respectively. The chip size is 1.2 (1.097 × 1.094) mm2.
The fourth chapter proposes a class J power amplifier using WINTM 0.15-µm GaAs process in n79 frequency band. The circuit design adopted a fully integrated two-stage common-source circuit structure. The amplifier achieves a 3-dB bandwidth from 3.8 to 5.7 GHz with small signal gain of 25.42 dB, the peak PAE is higher than 35% in n79 band. CW measurements demonstrate a maximum saturated output power of 23.43 dBm and an OP1dB of 22.34 dBm, respectively. The chip size is 1.5 (1.5 × 1.0) mm2.
The fifth chapter proposes a class J power amplifier using WINTM 0.25-μm GaN process in n79 frequency band. The circuit design adopts a fully integrated two-stage common-source circuit structure. The amplifier achieves a 3-dB bandwidth from 3.1 to 5.3 GHz with a small signal gain of 24.56 dB, the peak PAE is higher than 40% in n79 band. CW measurements demonstrate a maximum saturated output power of 38.33 dBm and an OP1dB of 25.16 dBm, respectively. The chip effective area is 3.57 (2.223 × 1.606) mm2. The fifth chapter proposes conclusions of the thesis. The advantages and disadvantages of these processes will be analyzed and discussed in the thesis.
關鍵字(中) ★ n79頻段
★ 互補式金屬氧化物半導體
★ 砷化鎵
★ 氮化鎵
★ J類功率放大器
★ 疊接式功率放大器
★ 射頻發射機
★ 記憶效應
★ 鄰近通道功率
★ 誤差向量振福
★ 數位預失真
★ 小型基地站
關鍵字(英) ★ 5G small cell
★ ACPR
★ Class-J power amplifier
★ stacked FET
★ n79 band
★ RF transmitter
★ GaN
★ GaAs
★ CMOS
★ EVM
★ memory effect
★ digital pre-distortion
論文目次 摘要 VI
Abstract VII
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XV
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用於n79頻段J類寬頻功率放大器 3
2-1 研究現況 3
2-2 J類功率放大器分析 6
2-3 考慮Cds非線性效應 9
第三章 應用於n79頻帶之CMOS製程J類功率放大器 10
3-1 研究現況 10
3-2 疊接式功率放大器分析 11
3-3 應用於n79頻帶之CMOS製程J類功率放大器 14
3-3-1 應用於n79頻帶之CMOS製程J類功率放大器設計 14
3-3-2 電路模擬與量測結果 20
3-3-3 結果比較與討論 31
第四章 應用於n79頻帶之砷化鎵製程J類功率放大器 34
4-1 研究現況 34
4-2 應用於n79頻帶之砷化鎵製程J類功率放大器 35
4-2-1 應用於n79頻帶之砷化鎵製程J類功率放大器設計 35
4-2-2 電路模擬與量測結果 39
4-2-3 結果比較與討論 50
第五章 應用於n79頻段之氮化鎵瓦特級J類功率放大器 52
5-1 研究現況 52
5-2 應用於n79頻段之氮化鎵瓦特級J類功率放大器 53
5-2-1 應用於n79頻段之氮化鎵瓦特級J類功率放大器設計 53
5-2-2 電路模擬與量測結果 60
5-2-3 結果比較與討論 69
第六章 結論 72
6-1 結論 72
6-2 未來方向 74
參考文獻 75
參考文獻 [1] Yezi Dong, Luhong Mao, Member, IEEE, and Sheng Xie, "Fully integrated Class-J power amplifier in standard CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, January 2017.
[2] Y. Yamashita, D. Kanemoto, H. Kanaya, R. K. Pokharel, and K. Yoshida, “A CMOS class-E power amplifier of 40-% PAE at 5 GHz for constant envelope modulation system,” in Proc. IEEE 13th Silicon Monolithic Integr. Circuits RF Syst. Topical Meeting, Austin, TX, USA, Jun. 2013, pp. 66–68.
[3] Z. S. Li et al., “A 2.45-GHz +20-dBm fast switching class-E power amplifier with 43% PAE and a 18-dB-wide power range in 0.18-μm CMOS,” in IEEE Trans. Circuits Syst. II, Express Briefs, vol. 59, no. 4, pp. 224–228, Apr. 2012.
[4] S. Shim, J. Han, and S. Hong, “A CMOS RF polar transmitter of a UHF mobile RFID reader for high power efficiency,” in IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 635–637, Sep. 2008.
[5] P. C. Huang, K. Y. Lin, and H. Wang, “A 4–17 GHz Darlington cascode broadband medium PA in 0.18-μm CMOS technology,” in IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43–45, Jan. 2010.
[6] C. Lu et al., “Linearization of CMOS broadband PAs through combined multi-gated transistors and capacitance compensation,” in IEEE Trans. Microw. Theory Techn., vol. 55, no. 11, pp. 2320–2328, Nov. 2007.
[7] P. C. Huang et al., “A high efficiency, broadband CMOS PA for cognitive radio applications,” in IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3556–3565, Dec. 2010.
[8] Hai-FengWu, Student Member, IEEE, Qian-Fu Cheng, Student Member, IEEE, Xu-Guang Li, and Hai-Peng Fu, Member, IEEE., “Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology,” in IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 63, no. 1, January 2016.
[9] Sataporn Pornpromlikit, Jinho Jeong, Member, IEEE, Calogero D. Presti, Member, IEEE, Antonino Scuderi, and Peter M. Asbeck, Fellow, IEEE, “A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS,” in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, January 2010.
[10] Amirreza Alizadeh, Student Member, IEEE, Milad Frounchi, Student Member, IEEE,and Ali Medi, Senior Member, IEEE, “Waveform engineering at gate node of Class-J power amplifiers,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65,no. 7, July 2017.
[11] Amirreza Alizadeh, Student Member, IEEE, Milad Frounchi, Student Member, IEEE, and Ali Medi, Senior Member, IEEE, " Dual-band design of integrated Class-J power amplifiers in GaAs pHEMT technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, August 2017.
[12] Amirreza Alizadeh, Student Member, IEEE, and Ali Medi, Senior Member, IEEE, " Investigation of a Class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, August 2017.
[13] Amirreza Alizadeh , Member, IEEE, Saleh Hassanzadehyamchi, Student Member, IEEE, Ali Medi, Senior Member, IEEE, and Sayfe Kiaei, Fellow, IEEE, " An X-Band Class-J power amplifier with active load modulation to boost drain efficiency," in IEEE Transactions on Circuits and Systems–I: Regular Papers, vol. 67, no. 10, October 2020.
[14] Amirreza Alizadeh , Member, IEEE, Saleh Hassanzadehyamchi, Student Member, IEEE, and Ali Medi, Senior Member, IEEE, " Integrated output matching networks for Class–J/J-1 power amplifiers," in IEEE Transactions on Circuits and Systems–I: Regular Papers, vol. 66, no. 8, August 2019.
[15] Gholamreza Nikandish ; Robert Bogdan Staszewski ; Anding Zhu “Bandwidth eenhancement of GaN MMIC doherty power amplifiers using broadband transformer-based load modulation network” IEEE Access 2019.
[16] Amirreza Alizadeh, ”Integrated output matching networks for Class-J/J-1 power amplifiers,” in IEEE Transactions on Circuits and Systems I: Regular papers.
[17] 紀品瑜, "應用J類連續模式技術於Ka頻段砷化鎵與C頻段氮化鎵功率放大器之研製," 碩士, 電機工程學系, 國立中央大學, 桃園市, 2020.
[18] Sih-Han Li ; Shawn S. H. Hsu ; Jie Zhang ; Keh-Ching Huang, “A sub-6 GHz compact GaN MMIC doherty PA with a 49.5% 6 dB back-off PAE for 5G Communications,” in Conference paper Publisher: IEEE, 2018.
[19] Guansheng Lv, Wenhua Chen, Long Chen and Zhenghe Feng, “A fully integrated C-band GaN MMIC doherty power amplifier with high gain and high efficiency for 5G application,” IEEE Access 2019.
[20] Wenning Gao, Yonglun Luo, Changyu Shen, Ruya Lei, “Design of Class-J power amplifier with dynamic matching network for 5G frequency band,”in IEEE 20th International Conference on Communication Technology, 2020.
[21] Rui-Jia Liu, Xiao-Wei Zhu, Xin Jiang, Dong Xia, “A 4.9-GHz GaN MMIC doherty power amplifier for 5G application,” in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2019.
[21] Rui-Jia Liu, Xiao-Wei Zhu, Xin Jiang, Dong Xia, “Optical stepper based 150mm GaAs pHEMT for microwave and millimeter-wave MMIC applications”, in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2019.
[22] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Norwell, MA, USA: Artech House, 2006.
[23] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, “A methodology for realizing high efficiency Class-J in a linear and broadband PA,” in IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[24] D. Gustafsson, K. Andersson, A. Leidenhed, M. Malmstrom, A. Rhodin and T. Wegeland, "A packaged hybrid doherty PA for microwave links," in 46th European Microwave Conference (EuMC), 2016, pp. 1437-1440.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2022-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明