博碩士論文 106383012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.143.23.225
姓名 王譯徵(I-Cheng Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
(Vibration Suppression and Dynamic Balance Design for Rotating Machines with Damping Particles)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 電動車齒輪箱之剛-柔耦合動力學模型建立及等效輻射聲功率分析★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出透過顆粒阻尼器(Particle Damper, PD)依工件動平衡狀況進行顆粒配置,以同時達到配重和抑制振動之雙重效果。首先透過多體動力學(Multi-Body Dynamics, MBD)建立迴轉式壓縮機模型,模型中考量循環氣體負載變化、支座與橡膠墊剛性與阻尼,並透過實驗驗證在轉動頻率下之振動之趨勢與量值,確認此模型之可靠性;未來利用此模型探討具PD之迴轉式壓縮機(新構型)之動平衡與抑振研究。
新構型模擬時需同時應用離散元素法(Discrete Element Method, DEM)和MBD進行雙向耦合得到迴轉式壓縮機之動態模擬結果;首先針對迴轉式壓縮機進行轉子系統之動平衡驗證,在此動平衡驗證中不考慮氣體負載影響;迴轉式壓縮機依據ISO 1940動平衡等級需低於G 2.5,透過PD可使轉子系統動平衡等級達到G 0.31,確認其動平衡改善成效。
然後針對新構型進行模擬並與原構型(頂配重塊)比較其抑振效果,確認新構型確實有抑振效果;也探討在不同顆粒粒徑、摩擦係數和恢復係數下,對迴轉式壓縮機系統抑振之影響;在不同顆粒半徑下皆對新構型有抑振效益,其中顆粒半徑1 mm較其他粒徑抑振效益較佳;隨顆粒摩擦係數增加,新構型系統之總動能越小,說明摩擦耗能越大,PD之抑振效果越佳;隨顆粒恢復係數增加,新構型之動能越大,說明碰撞耗能越小,PD之抑振效果越差。最後透過實驗驗證新構型之實際振動數值,徑向加速度平均可降低9.7%,切向加速度平均可降低2.46 %,確認PD之抑制振動效果。
摘要(英) In this study, a particle damper (PD) is proposed to configure particles according to the dynamic balance of the workpiece to achieve the dual effects of counterweight and vibration suppression at the same time. Firstly, the rotary compressor model is established through Multi-Body Dynamics (MBD), which considers the change of the circulating gas load, the stiffness, and the damping of the bearing and rubber. Experiments verify the trend and magnitude of vibration at the rotating frequency to confirm the reliability of the model. In the future, this model will be used to study the dynamic balance and vibration suppression of the rotary compressor with PD (new design).
The discrete element method (DEM) and MBD are used for two-way coupling to obtain the dynamic simulation results of the rotary compressor with PD (new design). Firstly, the dynamic balance verification of the rotor system is carried out for the rotary compressor, and the influence of gas load is not considered. According to ISO 1940, the dynamic balance level of the rotary compressor needs to be lower than G 2.5. Through PD, the dynamic balance level of the rotor system can reach G 0.31.
The new design is simulated and compared its vibration suppression effect with the original design (top weight) to confirm vibration suppression effect. The different particle sizes, friction coefficients, and restitution coefficients on the vibration suppression of rotary compressors were discussed. The new design has the vibration suppression effect under different particle radii, among which the particle radius of 1 mm is better than other particle diameters. With the increase of particle friction coefficient, the smaller the total kinetic energy of the new design, indicating that the more significant the friction energy consumption, the better the vibration suppression effect of PD. With the increase of particle restitution coefficient, the greater the kinetic energy of the new design, the smaller the collision energy consumption, and the worse the vibration suppression effect of PD. Finally, the actual vibration value of the new design is verified through experiments. The radial acceleration can be reduced by 9.7 % on average, and the tangential acceleration can be reduced by 2.46 % on average, confirming the vibration suppression effect of PD.
關鍵字(中) ★ 迴轉式壓縮機
★ 動平衡設計
★ 顆粒阻尼器
★ 抑振
★ 雙向耦合
關鍵字(英) ★ rotary compressor
★ dynamic balance design
★ particle damper
★ vibration suppression
★ two-way coupling
論文目次 目錄
摘要 I
ABSTRACT II
謝誌 IV
圖目錄 VII
表目錄 IX
符號對照表 X
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 3
1-4 論文架構 6
第2章 顆粒阻尼器之抑振理論與動平衡設計 8
2-1 迴轉式壓縮機構造與工作原理 8
2-2 阻尼顆粒之接觸理論與抑振機制 10
2-3 顆粒阻尼器設計與動平衡概念 15
第3章 迴轉式壓縮機動力模型建立 19
3-1 具顆粒阻尼之迴轉式壓縮機動力模型 19
3-2 變動氣體負載計算 25
3-3 迴轉式壓縮機接觸對與橡膠墊之剛性與阻尼計算 28
第4章 迴轉式壓縮機模擬設定與驗證 32
4-1 迴轉式壓縮機模擬與實驗規劃 32
4-2 實驗與模擬振動結果比較 35
4-3 具顆粒阻尼器之迴轉式壓縮機模型雙向耦合設定 38
第5章 具顆粒阻尼器之迴轉式壓縮機機動態模擬結果 41
5-1 顆粒阻尼器對迴轉式壓縮機之動平衡校正結果 42
5-2 顆粒阻尼器對迴轉式壓縮機之抑振效果 44
5-3 顆粒參數對新構型振動效益之影響 46
5-3-1 顆粒粒徑對新構型振動之影響 46
5-3-2 顆粒摩擦係數對新構型總動能之影響 46
5-3-3 顆粒恢復係數對新構型總動能之影響 47
5-4 實驗驗證具顆粒阻尼器之迴轉式壓縮機抑振效益 48
第6章 總結與未來展望 58
6-1 總結 58
6-2 未來展望 59
參考文獻 60
PUBLICATION LIST 67
作者介紹 68
參考文獻 [1]Katare, P. K., & Kriplani, V. M. (2012). Decade Developments of Rotary Compressor. International Journal of Engineering and Technology, 2(12), 1965-1973.
[2]Aw, K. T., & Ooi, K. T. (2021). A Review on Sliding Vane and Rolling Piston Compressors. Machines, 9(6), 125.
[3]Ooi, K. T., & Wong, T. N. (1997). A computer simulation of a rotary compressor for household refrigerators. Applied thermal engineering, 17(1), 65-78.
[4]Lee, S. J., Shim, J., & Kim, K. C. (2015). Development of capacity modulation compressor based on a two stage rotary compressor–part I: Modeling and simulation of compressor performance. International Journal of Refrigeration, 54, 22-37.
[5]Park, Y. C. (2010). Transient analysis of a variable speed rotary compressor. Energy Conversion and Management, 51(2), 277-287.
[6]Wang, Z., Yu, X., Liu, F., Feng, Q., & Tan, Q. (2013). Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor. International Journal of Refrigeration, 36(7), 1938-1950.
[7]Ba, D. C., Deng, W. J., Che, S. G., Li, Y., Guo, H. X., Li, N., & Yue, X. J. (2016). Gas dynamics analysis of a rotary compressor based on CFD. Applied Thermal Engineering, 99, 1263-1269.
[8]Agarwal, V., & Balachandran, B. (2022). Noise-assisted response steering for a rotor-stator system. Journal of Sound and Vibration, 116683.
[9]Ferraris, G., Andrianoely, M. A., Berlioz, A., & Dufour, R. (2006). Influence of cylinder pressure on the balancing of a rotary compressor. Journal of Sound and Vibration, 292(3-5), 899-910.
[10]Weaver Jr, W., Timoshenko, S. P., & Young, D. H. (1991). Vibration problems in engineering. John Wiley & Sons.
[11]Harris, C. M., Crede, C. E., & Den Hartog, J. P. (1962). Shock and Vibration Handbook, Vols. I, II, and III.
[12]Avallone, A., Eugene, B., Mark, T., (1987). Handbook for Mechanical Engineer, McGraw-Hill, New York.
[13]Van de Vegte, J., & Lake, R. T. (1978). Balancing of rotating systems during operation. Journal of Sound and Vibration, 57(2), 225-235.
[14]ISO:Balancing machines-description and evaluation, ISO 2953-1985(E), Geneva,Switzerland.
[15]Zhang, S., Gu, Z., & Zhang, Z. (2013). Dynamic balancing method for the single-threaded, fixed-pitch screw rotor. Vacuum, 90, 44-49.
[16]Zhang, H., Wu, J., Xie, F., Chen, A., & Li, Y. (2014). Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compressors. International Journal of Refrigeration, 47, 36-45.
[17]Yu, X., Mao, K., Lei, S., & Zhu, Y. (2019). A new adaptive proportional-integral control strategy for rotor active balancing systems during acceleration. Mechanism and Machine Theory, 136, 105-121.
[18]Pan, X., Lu, J., Huo, J., Gao, J., & Wu, H. (2020). A review on self-recovery regulation (SR) technique for unbalance vibration of high-end equipment. Chinese Journal of Mechanical Engineering, 33(1), 1-23.
[19]Ou, C. H., Hsu, C. H., Fan, G. J., & Chen, W. Y. (2020). Rotary machine vibration monitoring and smart balance correction. Advances in Mechanical Engineering, 12(6), 1687814020936032.
[20]Lu, Z., Masri, S. F., & Lu, X. (2020). Origination, development and applications of particle damping technology. In Particle Damping Technology Based Structural Control (pp. 21-51). Springer, Singapore.
[21]Panossian, H. (2008). Non-obstructive particle damping: new experiences and capabilities. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference (p. 2102).
[22]Ye, H., Wang, Y., Liu, B., & Jiang, X. (2019). Experimental study on the damping effect of multi-unit particle dampers applied to bracket structure. Applied Sciences, 9(14), 2912.
[23]Fowler, B. L., Flint, E. M., & Olson, S. E. (2001, July). Design methodology for particle damping. In Smart Structures and Materials 2001: Damping and Isolation (Vol. 4331, pp. 186-197). International Society for Optics and Photonics.
[24]Lu, Z., Lu, X., & Masri, S. F. (2010). Studies of the performance of particle dampers under dynamic loads. Journal of Sound and Vibration, 329(26), 5415-5433.
[25]Lu, Z., Masri, S. F., & Lu, X. (2011). Studies of the performance of particle dampers attached to a two-degrees-of-freedom system under random excitation. Journal of Vibration and Control, 17(10), 1454-1471.
[26]Chen, J., Wang, Y., Zhao, Y., & Feng, Y. (2019). Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker. Structural Control and Health Monitoring, 26(11), e2440.
[27]Xu, Z., Wang, M. Y., & Chen, T. (2004). An experimental study of particle damping for beams and plates. Journal of Vibration and Acoustics, 126(1), 141-148.
[28]Lu, Z., Lu, X., Lu, W., & Masri, S. F. (2012). Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads. Journal of Sound and Vibration, 331(9), 2007-2022.
[29]Lu, Z., Liao, Y., & Huang, Z. (2020). Stochastic response control of particle dampers under random seismic excitation. Journal of Sound and Vibration, 481, 115439.
[30]Moore, J. J., Palazzolo, A. B., Gadangi, R., Nale, T. A., Klusman, S. A., Brown, G. V., & Kascak, A. F. (1995). A forced response analysis and application of impact dampers to rotordynamic vibration suppression in a cryogenic environment. Journal of Vibration and Acoustics, 117(3A), 300-310.
[31] Wong, C. X., Daniel, M. C., & Rongong, J. A. (2009). Energy dissipation prediction of particle dampers. Journal of Sound and Vibration, 319(1-2), 91-118.
[32]Yao, B., & Chen, Q. (2015). Investigation on zero-gravity behavior of particle dampers. Journal of Vibration and Control, 21(1), 124-133.
[33]Ahmad, N., Ranganath, R., & Ghosal, A. (2017). Modeling and experimental study of a honeycomb beam filled with damping particles. Journal of Sound and Vibration, 391, 20-34.
[34]Xiao, W., Huang, Y., Jiang, H., Lin, H., & Li, J. (2016). Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads. Particuology, 27, 40-50.
[35]Xiao, W., Li, J., Pan, T., Zhang, X., & Huang, Y. (2017). Investigation into the influence of particles′ friction coefficient on vibration suppression in gear transmission. Mechanism and Machine Theory, 108, 217-230.
[36]Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.
[37]Bolander, J. E., Eliáš, J., Cusatis, G., & Nagai, K. (2021). Discrete mechanical models of concrete fracture. Engineering Fracture Mechanics, 257, 108030.
[38]Jaggannagari, S. R., Desu, R. K., Reimann, J., Gan, Y., Moscardini, M., & Annabattula, R. K. (2021). DEM simulations of vibrated sphere packings in slender prismatic containers. Powder Technology, 393, 31-59.
[39]Corral, E., Moreno, R. G., García, M. G., & Castejón, C. (2021). Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dynamics, 1-27.
[40]Coetzee, C. J., Els, D. N. J., & Dymond, G. F. (2010). Discrete element parameter calibration and the modelling of dragline bucket filling. Journal of Terramechanics, 47(1), 33-44.
[41]Barrios, G. K., & Tavares, L. M. (2016). A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling. International Journal of Mineral Processing, 156, 32-42.
[42]Lommen, S., Lodewijks, G., & Schott, D. L. (2018). Co-simulation framework of discrete element method and multibody dynamics models. Engineering Computations. Engineering Computations, 35(3), 1481-1499.
[43]Chung, Y. C., & Wu, Y. R. (2019). Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method. Nonlinear Dynamics, 98(1), 129-149.
[44]Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3), 239-250.
[45]Briggs, C. A., & Bearman, R. A. (1995). The assessment of rock breakage and damage in crushing machinery. In Proceedings Explore, 95, 167-172.
[46]Zhang, D., & Whiten, W. J. (1996). The calculation of contact forces between particles using spring and damping models. Powder Technology, 88(1), 59-64.
[47]Chung, Y. C., Wu, C. W., Kuo, C. Y., & Hsiau, S. S. (2019). A rapid granular chute avalanche impinging on a small fixed obstacle:DEM modeling, experimental validation and exploration of granular stress. Applied Mathematical Modelling, 74, 540-568.
[48]Wu, Y. R., Chung, Y. C., & Wang, I. C. (2021). Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles. Mechanism and Machine Theory, 159, 104257.
[49]Terzioglu, F., Rongong, J. A., & Lord, C. E. (2020, September). The dissipative characteristics of oblate particles in granular dampers. In EURODYN 2020: Proceedings of the XI International Conference on Structural Dynamics (pp. 4851-4866). European Association for Structural Dynamics (EASD).
[50] Shabana, A. (2020). Dynamics of multibody systems. Cambridge university press.
[51]McConville, J.B., McGrath, J.F. (1998). Introduction to ADAMS Theory. Mechanical Dynamics Inc., Michigan.
[52]Magnus, K., & Müller, H. H. (1974). Grundlagen der technischen Mechanik (Vol. 7). Stuttgart: Teubner.
[53]Gantmacher, F. (1975). Lectures in Analytical Mechanics. Mir Publishers, Moscow.
[54]Flores, P., Ambrósio, J., Claro, J. P., & Lankarani, H. M. (2008). Kinematics and dynamics of multibody systems with imperfect joints: models and case studies (Vol. 34). Springer Science & Business Media.
[55]Frene, J., Nicolas, D., Degueurce, B., Berthe, D., & Godet, M. (1997). Hydrodynamic lubrication:bearings and thrust bearings. Elsevier.
[56]Skrinjar, L., Slavič, J., & Boltežar, M. (2018). A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 145, 171-187.
[57]Ambrosio, J., Malça, C., & Ramalho, A. (2016). Planar roller chain drive dynamics using a cylindrical contact force model. Mechanics Based Design of Structures and Machines, 44(1-2), 109-122.
[58]Oliveri, S. M., Sequenzia, G., & Calì, M. (2009). Flexible multibody model of desmodromic timing system. Mechanics Based Design of Structures and Machines, 37(1), 15-30.
[59]Sapietová, A., Gajdoš, L., Dekýš, V., & Sapieta, M. (2016). Analysis of the influence of input function contact parameters of the impact force process in the MSC. ADAMS. In Advanced mechatronics solutions (pp. 243-253). Springer, Cham.
[60]MSC ADAMS. (2013). Help Documentation (ADAMS/Solver). MSC. Software, Cambridge.
[61]Giesbers, J. (2012). Contact mechanics in MSC Adams-A technical evaluation of the contact models in multibody dynamics software MSC Adams (Bachelor′s thesis, University of Twente).
[62]Gough, J. (2009). Use of approximate calculations and finite element analysis to estimate the stiffness of rubber bushes and cylindrical mountings. Journal of Rubber Research, 12(4), 185-199.
[63]Geethamma, V. G., Asaletha, R., Kalarikkal, N., & Thomas, S. (2014). Vibration and sound damping in polymers. Resonance, 19(9), 821-833.
[64]Ashokrao Fuke, C., Anna Mahanwar, P., & Ray Chowdhury, S. (2019). Modified ethylene‐propylene‐diene elastomer (EPDM)‐contained silicone rubber/ethylene‐propylene‐diene elastomer (EPDM) blends:Effect of composition and electron beam crosslinking on mechanical, heat shrinkability, electrical, and morphological properties. Journal of Applied Polymer Science, 136(29), 47787.
[65]Wang, I. C., Wu, Y. R., & Fuh, Y. K. (2021). Vibration prediction and experimental validation of a rotary compressor based on multi-body dynamics. Mechanics Based Design of Structures and Machines, 1-13.
[66]Deresiewicz, H. (1958). Mechanics of granular matter. In Advances in applied mechanics (Vol. 5, pp. 233-306). Elsevier.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2022-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明