參考文獻 |
[1]Katare, P. K., & Kriplani, V. M. (2012). Decade Developments of Rotary Compressor. International Journal of Engineering and Technology, 2(12), 1965-1973.
[2]Aw, K. T., & Ooi, K. T. (2021). A Review on Sliding Vane and Rolling Piston Compressors. Machines, 9(6), 125.
[3]Ooi, K. T., & Wong, T. N. (1997). A computer simulation of a rotary compressor for household refrigerators. Applied thermal engineering, 17(1), 65-78.
[4]Lee, S. J., Shim, J., & Kim, K. C. (2015). Development of capacity modulation compressor based on a two stage rotary compressor–part I: Modeling and simulation of compressor performance. International Journal of Refrigeration, 54, 22-37.
[5]Park, Y. C. (2010). Transient analysis of a variable speed rotary compressor. Energy Conversion and Management, 51(2), 277-287.
[6]Wang, Z., Yu, X., Liu, F., Feng, Q., & Tan, Q. (2013). Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor. International Journal of Refrigeration, 36(7), 1938-1950.
[7]Ba, D. C., Deng, W. J., Che, S. G., Li, Y., Guo, H. X., Li, N., & Yue, X. J. (2016). Gas dynamics analysis of a rotary compressor based on CFD. Applied Thermal Engineering, 99, 1263-1269.
[8]Agarwal, V., & Balachandran, B. (2022). Noise-assisted response steering for a rotor-stator system. Journal of Sound and Vibration, 116683.
[9]Ferraris, G., Andrianoely, M. A., Berlioz, A., & Dufour, R. (2006). Influence of cylinder pressure on the balancing of a rotary compressor. Journal of Sound and Vibration, 292(3-5), 899-910.
[10]Weaver Jr, W., Timoshenko, S. P., & Young, D. H. (1991). Vibration problems in engineering. John Wiley & Sons.
[11]Harris, C. M., Crede, C. E., & Den Hartog, J. P. (1962). Shock and Vibration Handbook, Vols. I, II, and III.
[12]Avallone, A., Eugene, B., Mark, T., (1987). Handbook for Mechanical Engineer, McGraw-Hill, New York.
[13]Van de Vegte, J., & Lake, R. T. (1978). Balancing of rotating systems during operation. Journal of Sound and Vibration, 57(2), 225-235.
[14]ISO:Balancing machines-description and evaluation, ISO 2953-1985(E), Geneva,Switzerland.
[15]Zhang, S., Gu, Z., & Zhang, Z. (2013). Dynamic balancing method for the single-threaded, fixed-pitch screw rotor. Vacuum, 90, 44-49.
[16]Zhang, H., Wu, J., Xie, F., Chen, A., & Li, Y. (2014). Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compressors. International Journal of Refrigeration, 47, 36-45.
[17]Yu, X., Mao, K., Lei, S., & Zhu, Y. (2019). A new adaptive proportional-integral control strategy for rotor active balancing systems during acceleration. Mechanism and Machine Theory, 136, 105-121.
[18]Pan, X., Lu, J., Huo, J., Gao, J., & Wu, H. (2020). A review on self-recovery regulation (SR) technique for unbalance vibration of high-end equipment. Chinese Journal of Mechanical Engineering, 33(1), 1-23.
[19]Ou, C. H., Hsu, C. H., Fan, G. J., & Chen, W. Y. (2020). Rotary machine vibration monitoring and smart balance correction. Advances in Mechanical Engineering, 12(6), 1687814020936032.
[20]Lu, Z., Masri, S. F., & Lu, X. (2020). Origination, development and applications of particle damping technology. In Particle Damping Technology Based Structural Control (pp. 21-51). Springer, Singapore.
[21]Panossian, H. (2008). Non-obstructive particle damping: new experiences and capabilities. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference (p. 2102).
[22]Ye, H., Wang, Y., Liu, B., & Jiang, X. (2019). Experimental study on the damping effect of multi-unit particle dampers applied to bracket structure. Applied Sciences, 9(14), 2912.
[23]Fowler, B. L., Flint, E. M., & Olson, S. E. (2001, July). Design methodology for particle damping. In Smart Structures and Materials 2001: Damping and Isolation (Vol. 4331, pp. 186-197). International Society for Optics and Photonics.
[24]Lu, Z., Lu, X., & Masri, S. F. (2010). Studies of the performance of particle dampers under dynamic loads. Journal of Sound and Vibration, 329(26), 5415-5433.
[25]Lu, Z., Masri, S. F., & Lu, X. (2011). Studies of the performance of particle dampers attached to a two-degrees-of-freedom system under random excitation. Journal of Vibration and Control, 17(10), 1454-1471.
[26]Chen, J., Wang, Y., Zhao, Y., & Feng, Y. (2019). Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker. Structural Control and Health Monitoring, 26(11), e2440.
[27]Xu, Z., Wang, M. Y., & Chen, T. (2004). An experimental study of particle damping for beams and plates. Journal of Vibration and Acoustics, 126(1), 141-148.
[28]Lu, Z., Lu, X., Lu, W., & Masri, S. F. (2012). Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads. Journal of Sound and Vibration, 331(9), 2007-2022.
[29]Lu, Z., Liao, Y., & Huang, Z. (2020). Stochastic response control of particle dampers under random seismic excitation. Journal of Sound and Vibration, 481, 115439.
[30]Moore, J. J., Palazzolo, A. B., Gadangi, R., Nale, T. A., Klusman, S. A., Brown, G. V., & Kascak, A. F. (1995). A forced response analysis and application of impact dampers to rotordynamic vibration suppression in a cryogenic environment. Journal of Vibration and Acoustics, 117(3A), 300-310.
[31] Wong, C. X., Daniel, M. C., & Rongong, J. A. (2009). Energy dissipation prediction of particle dampers. Journal of Sound and Vibration, 319(1-2), 91-118.
[32]Yao, B., & Chen, Q. (2015). Investigation on zero-gravity behavior of particle dampers. Journal of Vibration and Control, 21(1), 124-133.
[33]Ahmad, N., Ranganath, R., & Ghosal, A. (2017). Modeling and experimental study of a honeycomb beam filled with damping particles. Journal of Sound and Vibration, 391, 20-34.
[34]Xiao, W., Huang, Y., Jiang, H., Lin, H., & Li, J. (2016). Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads. Particuology, 27, 40-50.
[35]Xiao, W., Li, J., Pan, T., Zhang, X., & Huang, Y. (2017). Investigation into the influence of particles′ friction coefficient on vibration suppression in gear transmission. Mechanism and Machine Theory, 108, 217-230.
[36]Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.
[37]Bolander, J. E., Eliáš, J., Cusatis, G., & Nagai, K. (2021). Discrete mechanical models of concrete fracture. Engineering Fracture Mechanics, 257, 108030.
[38]Jaggannagari, S. R., Desu, R. K., Reimann, J., Gan, Y., Moscardini, M., & Annabattula, R. K. (2021). DEM simulations of vibrated sphere packings in slender prismatic containers. Powder Technology, 393, 31-59.
[39]Corral, E., Moreno, R. G., García, M. G., & Castejón, C. (2021). Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dynamics, 1-27.
[40]Coetzee, C. J., Els, D. N. J., & Dymond, G. F. (2010). Discrete element parameter calibration and the modelling of dragline bucket filling. Journal of Terramechanics, 47(1), 33-44.
[41]Barrios, G. K., & Tavares, L. M. (2016). A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling. International Journal of Mineral Processing, 156, 32-42.
[42]Lommen, S., Lodewijks, G., & Schott, D. L. (2018). Co-simulation framework of discrete element method and multibody dynamics models. Engineering Computations. Engineering Computations, 35(3), 1481-1499.
[43]Chung, Y. C., & Wu, Y. R. (2019). Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method. Nonlinear Dynamics, 98(1), 129-149.
[44]Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3), 239-250.
[45]Briggs, C. A., & Bearman, R. A. (1995). The assessment of rock breakage and damage in crushing machinery. In Proceedings Explore, 95, 167-172.
[46]Zhang, D., & Whiten, W. J. (1996). The calculation of contact forces between particles using spring and damping models. Powder Technology, 88(1), 59-64.
[47]Chung, Y. C., Wu, C. W., Kuo, C. Y., & Hsiau, S. S. (2019). A rapid granular chute avalanche impinging on a small fixed obstacle:DEM modeling, experimental validation and exploration of granular stress. Applied Mathematical Modelling, 74, 540-568.
[48]Wu, Y. R., Chung, Y. C., & Wang, I. C. (2021). Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles. Mechanism and Machine Theory, 159, 104257.
[49]Terzioglu, F., Rongong, J. A., & Lord, C. E. (2020, September). The dissipative characteristics of oblate particles in granular dampers. In EURODYN 2020: Proceedings of the XI International Conference on Structural Dynamics (pp. 4851-4866). European Association for Structural Dynamics (EASD).
[50] Shabana, A. (2020). Dynamics of multibody systems. Cambridge university press.
[51]McConville, J.B., McGrath, J.F. (1998). Introduction to ADAMS Theory. Mechanical Dynamics Inc., Michigan.
[52]Magnus, K., & Müller, H. H. (1974). Grundlagen der technischen Mechanik (Vol. 7). Stuttgart: Teubner.
[53]Gantmacher, F. (1975). Lectures in Analytical Mechanics. Mir Publishers, Moscow.
[54]Flores, P., Ambrósio, J., Claro, J. P., & Lankarani, H. M. (2008). Kinematics and dynamics of multibody systems with imperfect joints: models and case studies (Vol. 34). Springer Science & Business Media.
[55]Frene, J., Nicolas, D., Degueurce, B., Berthe, D., & Godet, M. (1997). Hydrodynamic lubrication:bearings and thrust bearings. Elsevier.
[56]Skrinjar, L., Slavič, J., & Boltežar, M. (2018). A review of continuous contact-force models in multibody dynamics. International Journal of Mechanical Sciences, 145, 171-187.
[57]Ambrosio, J., Malça, C., & Ramalho, A. (2016). Planar roller chain drive dynamics using a cylindrical contact force model. Mechanics Based Design of Structures and Machines, 44(1-2), 109-122.
[58]Oliveri, S. M., Sequenzia, G., & Calì, M. (2009). Flexible multibody model of desmodromic timing system. Mechanics Based Design of Structures and Machines, 37(1), 15-30.
[59]Sapietová, A., Gajdoš, L., Dekýš, V., & Sapieta, M. (2016). Analysis of the influence of input function contact parameters of the impact force process in the MSC. ADAMS. In Advanced mechatronics solutions (pp. 243-253). Springer, Cham.
[60]MSC ADAMS. (2013). Help Documentation (ADAMS/Solver). MSC. Software, Cambridge.
[61]Giesbers, J. (2012). Contact mechanics in MSC Adams-A technical evaluation of the contact models in multibody dynamics software MSC Adams (Bachelor′s thesis, University of Twente).
[62]Gough, J. (2009). Use of approximate calculations and finite element analysis to estimate the stiffness of rubber bushes and cylindrical mountings. Journal of Rubber Research, 12(4), 185-199.
[63]Geethamma, V. G., Asaletha, R., Kalarikkal, N., & Thomas, S. (2014). Vibration and sound damping in polymers. Resonance, 19(9), 821-833.
[64]Ashokrao Fuke, C., Anna Mahanwar, P., & Ray Chowdhury, S. (2019). Modified ethylene‐propylene‐diene elastomer (EPDM)‐contained silicone rubber/ethylene‐propylene‐diene elastomer (EPDM) blends:Effect of composition and electron beam crosslinking on mechanical, heat shrinkability, electrical, and morphological properties. Journal of Applied Polymer Science, 136(29), 47787.
[65]Wang, I. C., Wu, Y. R., & Fuh, Y. K. (2021). Vibration prediction and experimental validation of a rotary compressor based on multi-body dynamics. Mechanics Based Design of Structures and Machines, 1-13.
[66]Deresiewicz, H. (1958). Mechanics of granular matter. In Advances in applied mechanics (Vol. 5, pp. 233-306). Elsevier. |