參考文獻 |
1. H.-I. Ji, J.-H. Lee, J.-W. Son, K.J. Yoon, S. Yang, and B.-K. Kim, “Protonic ceramic electrolysis cells for fuel production: a brief review”, Journal of the Korean Ceramic Society. 57: p. 480-494, 2020
2. W.R. Grove, “XXIV. On voltaic series and the combination of gases by platinum”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 14(86-87): p. 127-130, 1839
3. Y.A. Cengel, M.A. Boles, and M. Kanoglu, Thermodynamics: an engineering approach. Vol. 5, McGraw-hill New York. 2011
4. J. Hou, Z. Zhu, J. Qian, and W. Liu, “A new cobalt-free proton-blocking composite cathode La2NiO4+ δ–LaNi0. 6Fe0. 4O3− δ for BaZr0. 1Ce0. 7Y0. 2O3− δ-based solid oxide fuel cells”, Journal of Power Sources. 264: p. 67-75, 2014
5. L. Bi, S. Boulfrad, and E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews. 43(24): p. 8255-8270, 2014
6. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, “Review of progress in high temperature solid oxide fuel cells”, ChemInform. 46(31): p. no-no, 2015
7. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, and G. Kim, “Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells”, ChemSusChem. 7(10): p. 2811-2815, 2014
8. Y. Xia, Z. Jin, H. Wang, Z. Gong, H. Lv, R. Peng, W. Liu, and L. Bi, “A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance”, Journal of Materials Chemistry A. 7(27): p. 16136-16148, 2019
9. Y. Niu, J. Sunarso, F. Liang, W. Zhou, Z. Zhu, and Z. Shao, “A comparative study of oxygen reduction reaction on Bi-and La-doped SrFeO3− δ perovskite cathodes”, Journal of the Electrochemical Society. 158(2): p. B132, 2010
10. T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, and T. Kawada, “Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique”, Journal of Power Sources. 106(1-2): p. 224-230, 2002
11. J. Sunarso, S.S. Hashim, N. Zhu, and W. Zhou, “Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review”, Progress in Energy and Combustion Science. 61: p. 57-77, 2017
12. K. Kreuer, “Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides”, Solid State Ionics. 125(1-4): p. 285-302, 1999
13. F. He, M. Liang, W. Wang, R. Ran, G. Yang, W. Zhou, and Z. Shao, “High-performance proton-conducting fuel cell with b-site-deficient perovskites for all cell components”, Energy & Fuels. 34(9): p. 11464-11471, 2020
14. W. Wang, D. Medvedev, and Z. Shao, “Gas Humidification Impact on the Properties and Performance of Perovskite‐Type Functional Materials in Proton‐Conducting Solid Oxide Cells”, Advanced Functional Materials. 28(48): p. 1802592, 2018
15. M.R. Somalu, N.W. Norman, and A. Muchtar, “A short review on the proton conducting electrolytes for solid oxide fuel cell applications”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 52(2): p. 115-122, 2018
16. L. Bi, E.H. Da′as, and S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochemistry Communications. 80: p. 20-23, 2017
17. 衣寶廉, 燃料電池: 原理與應用. 五南圖書出版股份有限公司. 2005
18. S.P. Shaikh, A. Muchtar, and M.R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews. 51: p. 1-8, 2015
19. W. Zhu and S. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering: A. 362(1-2): p. 228-239, 2003
20. M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. Di Bartolomeo, “Influence of the ratio between Ni and BaCe0. 9Y0. 1O3− δ on microstructural and electrical properties of proton conducting Ni–BaCe0. 9Y0. 1O3− δ anodes”, Journal of alloys and compounds. 509(4): p. 1157-1162, 2011
21. B.H. Rainwater, M. Liu, and M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, international journal of hydrogen energy. 37(23): p. 18342-18348, 2012
22. L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry communications. 16(1): p. 37-40, 2012
23. K. Xie, R. Yan, and X. Liu, “A novel anode supported BaCe0. 4Zr0. 3Sn0. 1Y0. 2O3− δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry communications. 11(8): p. 1618-1622, 2009
24. H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy. 33(11): p. 2826-2833, 2008
25. J. Patakangas, Y. Ma, Y. Jing, and P. Lund, “Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)”, Journal of Power Sources. 263: p. 315-331, 2014
26. S. Badwal and K. Foger, “Solid oxide electrolyte fuel cell review”, Ceramics International. 22(3): p. 257-265, 1996
27. C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry. 14(7): p. 1125-1144, 2010
28. A. Nikonov, K. Kuterbekov, K.Z. Bekmyrza, and N. Pavzderin, “A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode”, Eurasian Journal of Physics and Functional Materials. 2(3): p. 274-292, 2018
29. N.Q. Minh, “Ceramic fuel cells”, Journal of the American Ceramic Society. 76(3): p. 563-588, 1993
30. N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics. 174(1-4): p. 271-277, 2004
31. A.J. Appleby, “Fuel cell handbook”, 1988
32. S.M. Haile, “Fuel cell materials and components”, Acta materialia. 51(19): p. 5981-6000, 2003
33. R. O′hayre, S.-W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons. 2016
34. E. Povoden-Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells. 2008, ETH Zurich.
35. N.-Y. Hsu, S.-C. Yen, K.-T. Jeng, and C.-C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of power sources. 161(1): p. 232-239, 2006
36. L. Fan and P.-C. Su, “Layer-structured LiNi0. 8Co0. 2O2: a new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells”, Journal of Power Sources. 306: p. 369-377, 2016
37. S.B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical reviews. 104(10): p. 4791-4844, 2004
38. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer Science & Business Media. 2009
39. H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied catalysis. 26: p. 265-276, 1986
40. S. Choi and G. Kim, “Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs”, Journal of the Korean Ceramic Society. 51(4): p. 265-270, 2014
41. S. Choi and G. Kim, “Electrochemical Properties of La 4 Ni 3 O 10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs”, Journal of the Korean Ceramic Society. 51(4): p. 265-270, 2014
42. U.S. Schubert and N. Hüsing, Synthesis of inorganic materials. John Wiley & Sons. 2019
43. X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, “Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation”, Solid State Ionics. 168(1-2): p. 31-36, 2004
44. R. Pelosato, C. Cristiani, G. Dotelli, M. Mariani, A. Donazzi, and I.N. Sora, “Co-precipitation synthesis of SOFC electrode materials”, international journal of hydrogen energy. 38(1): p. 480-491, 2013
45. S.Y. Lee, J. Yun, and W.-P. Tai, “Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications”, Advanced Powder Technology. 29(10): p. 2423-2428, 2018
46. W. Jang, S. Hyun, and S. Kim, “Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC”, Journal of Materials Science. 37(12): p. 2535-2541, 2002
47. P.G. Keech, D.E. Trifan, and V.I. Birss, “Synthesis and performance of sol-gel prepared Ni-YSZ cermet SOFC anodes”, Journal of The Electrochemical Society. 152(3): p. A645, 2005
48. W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine‐Nitrate process and its application in Intermediate‐Temperature Solid‐Oxide fuel cells”, Journal of the American Ceramic Society. 91(4): p. 1155-1162, 2008
49. L. Da Conceicao, A.M. Silva, N.F. Ribeiro, and M.M. Souza, “Combustion synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) porous materials for application as cathode in IT-SOFC”, Materials Research Bulletin. 46(2): p. 308-314, 2011
50. M. Backhaus-Ricoult, K. Adib, T.S. Clair, B. Luerssen, L. Gregoratti, and A. Barinov, “In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy”, Solid State Ionics. 179(21-26): p. 891-895, 2008
51. A.J. Schuler, Z. Wuillemin, A. Hessler-Wyser, and J. Van Herle, “Sulfur as pollutant species on the cathode side of a SOFC system”, ECS Transactions. 25(2): p. 2845, 2009
52. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1− xSrxCoO3− δ”, Journal of Solid State Chemistry. 80(1): p. 102-111, 1989
53. K. Lee and A. Manthiram, “Effect of cation doping on the physical properties and electrochemical performance of Nd0. 6Sr0. 4Co0. 8M0. 2O3− δ (M= Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics. 178(13-14): p. 995-1000, 2007
54. B. Fan, J. Yan, and X. Yan, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0. 54Sr0. 44Co0. 2Fe0. 8O3-δ as SOFC cathode material”, Solid state sciences. 13(10): p. 1835-1839, 2011
55. 葉哲均, 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料 La0. 8Sr0. 2MnO3, La0. 6Sr0. 4Co0. 2Fe0. 8O3 與其電化學性質之研究. 2014, National Central University.
56. F.H. Taylor, J. Buckeridge, and C.R.A. Catlow, “Screening divalent metals for A-and B-site dopants in LaFeO3”, Chemistry of Materials. 29(19): p. 8147-8157, 2017
57. S. Guo, H. Wu, F. Puleo, and L.F. Liotta, “B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1− xSrxCo1− yFeyO3–δ perovskite oxides as cathodes for IT-SOFCs”, Catalysts. 5(1): p. 366-391, 2015
58. W. Jia, Z. Huang, W. Sun, L. Wu, L. Zheng, Y. Wang, J. Huang, X. Yang, M. Lv, and L. Ge, “Flexible A-site doping La0. 6-xMxSr0. 4Co0. 2Fe0. 8O3 (M= Ca, Ba, Bi; x= 0, 0.1, 0.2) as novel cathode material for intermediate-temperature solid oxide fuel cells: A first-principles study and experimental exploration”, Journal of Power Sources. 490: p. 229564, 2021
59. K.-R. Lee, C.-J. Tseng, S.-C. Jang, J.-C. Lin, K.-W. Wang, J.-K. Chang, T.-C. Chen, and S.-W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy. 44(42): p. 23784-23792, 2019
60. 葉俊廷, “SOFC 關鍵材料之製備及其應用於刮刀成型技術製備 IT-SOFC 之特性研究”, 臺北科技大學工程科技研究所學位論文: p. 1-130, 2012
61. R. Peng, T. Wu, W. Liu, X. Liu, and G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry. 20(30): p. 6218-6225, 2010 |