博碩士論文 108327029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.147.27.210
姓名 廖韡翔(Wei-Xiang Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 連續波近紅外雷射光之雷射玻璃彎曲技術研發
(A New Laser Glass Bending Approach Based on Continuous Wave Near-infrared Laser)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-5-23以後開放)
摘要(中) 玻璃具有高透光性、耐磨損、耐高溫與高化學穩定性等諸多優點,應用相當廣泛。為滿足更多應用需求,3D或曲面玻璃的製作技術也愈受重視。作為可彎曲玻璃技術之一的雷射彎曲已於2008年由吳東江先生及其團隊驗證其可行性,文獻顯示使用二氧化碳雷射(CO2 laser)可在厚度為150 µm、寬度為10 mm的薄玻璃上完成最大24°的彎曲角。雖然可行性獲得證實,但此後並無其他以雷射彎曲玻璃的成果報導,顯然雷射玻璃彎曲技術仍有諸多問題待克服:如何在厚度與寬度較大的玻璃上進行角度較大的彎曲是主要的挑戰。本研究先採用與文獻相同的掃描策略,但有別於使用CO2雷射,以近紅外光(Near-infrared, NIR)、連續式雷射(CW-laser)對不同厚度及寬度的鈉鈣玻璃(Soda-lime glass)及硼矽酸鹽玻璃(Borosilicate glass)進行雷射彎曲,成功地在厚度為550 m的鈉鈣玻璃及1000 m的硼矽酸鹽玻璃上完成了30°、60°與90°三種角度的彎曲。本研究同時提出一種新的掃描策略,此法成功地直接彎曲厚度1 mm、寬度13 mm的硼矽酸鹽玻璃,且改善彎曲處永久性材料堆積的問題,在30°的彎曲角下,彎曲處的厚度增幅僅有約10%。最後,為了進一步提高可彎曲玻璃的寬度,本研究提出了以雙雷射源同時掃描的策略,藉此改善雷射光在玻璃內傳播因能量衰減致使彎曲軸能量不均勻的問題,成功的彎曲了寬度為25 mm的玻璃。
摘要(英) Glass has many advantages such as high light transmission, wear resistance, high tempera-ture resistance and high chemical stability, and is widely used. In order to meet the needs of more applications, 3D or curved glass fabrication technology is also gaining more attention. One of the bendable glass technologies, laser bending, was demonstrated by Dongjiang Wu and his team in 2008, showing that a maximum bending angle of 24° could be achieved with a CO2 laser on thin glass of 150 µm thickness and 10 mm width. Although the feasibility was con-firmed, no other results on laser glass bending have been reported since then. It is clear that there are still many problems to overcome in laser glass bending: the main challenge is how to bend large angles on glass with large thickness and width. In this study, we first adopted the same scanning strategy as in the literature, but used a near-infrared (NIR), continuous laser (CW-laser) to bend soda-lime glass and borosilicate glass of different thicknesses and widths, instead of using a CO2 laser. In this study, three bending angles of 30°, 60° and 90° were suc-cessfully performed on soda-lime glass of 550 µm thickness and borosilicate glass of 1000 µm thickness. This study also proposes a new scanning strategy to bend borosilicate glass with a thickness of 1 mm and a width of 13 mm directly, and to improve the problem of permanent material accumulation at the bend, with only about 10% increase in thickness at 30° bend angle. Finally, in order to further improve the width of the bendable glass, a simultaneous scanning strategy with dual laser sources was proposed to improve the uneven energy of the bending axis due to the energy decay of laser light propagation in the glass, and a glass width of 25 mm was successfully bent.
關鍵字(中) ★ 玻璃彎曲
★ 雷射玻璃彎曲
★ 近紅外線連續式雷射
★ 硬脆材料
★ 板材彎曲
關鍵字(英) ★ glass bending
★ laser glass bending
★ near-infrared continuous laser
★ hard and brittle materials
★ sheet bending
論文目次 中文摘要 VI
ABSTRACT VII
CONTENTS VIII
LIST OF FIGURES X
LIST OF TABLES XIV
Chapter 1 Introduction 1
1-1 Preface 1
1-2 研究動機與目的 3
Chapter 2 Literature review 4
2-1 雷射板材彎曲技術介紹及發展歷史 4
2-2 雷射彎曲技術 6
2-2-1 雷射彎曲機制 6
2-2-2 金屬及合金材料的雷射彎曲 11
2-2-3 脆性材料的雷射彎曲 15
2-3 動機與挑戰 28
Chapter 3 Experimental details 30
3-1 研究架構及流程 30
3-2 實驗材料 30
3-3 實驗細節介紹 31
3-3-1 樣品製備 31
3-3-2 近紅外光之連續式雷射系統裝置及光路設計 32
3-3-3 雷射參數規劃 34
3-4 研究設備及檢測儀器 36
Chapter 4 Results and Discussion 38
4-1 NIR laser與CO2 laser在玻璃彎曲中的比較 38
4-2 雷射玻璃彎曲 41
4-2-1 試片以水平固定 42
4-2-2 試片以垂直固定 44
4-2-2-1 施加輔助外力的玻璃彎曲 44
4-2-2-2 能量的傳遞與衰減 47
4-3 雷射參數對玻璃彎曲的影響 51
4-4 彎曲軸的厚度改變 54
4-5 雙熱源的雷射玻璃彎曲 60
Chapter 5 Conclusions 68
References 70
碩士論文口試-口試委員問題集 72
參考文獻 [1] T. Izawa, N. Shibata, and A. Takeda, "Optical attenuation in pure and doped fused silica in the IR wavelength region," Applied Physics Letters, vol. 31, no. 1, pp. 33-35, 1977.
[2] W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps," Applied physics letters, vol. 69, no. 21, pp. 3146-3148, 1996.
[3] K. Du and P. Shi, "Subsurface precision machining of glass substrates by innovative," Glass Sci. Technol, vol. 76, no. 2, p. 95, 2003.
[4] V. K. Jain and V. K. Jain, Micromanufacturing processes. CRC press Boca Raton, FL, 2013.
[5] K. Scully, "Laser line heating," Journal of Ship Production, vol. 3, no. 04, pp. 237-246, 1987.
[6] A. L. Bachmann, M. D. Dickey, and N. Lazarus, "Making Light Work of Metal Bending: Laser Forming in Rapid Prototyping," Quantum Beam Science, vol. 4, no. 4, p. 44, 2020.
[7] J. Magee, K. Watkins, and W. Steen, "Advances in laser forming," Journal of laser applications, vol. 10, no. 6, pp. 235-246, 1998.
[8] A. C. Tam, C. C. Poon, and L. Crawforth, "Laser bending of ceramics and application to manufacture magnetic head sliders in disk drives," in Analytical Sciences/Supplements Proceedings of 11th International Conference of Photoacoustic and Photothermal Phenomena, 2002: The Japan Society for Analytical Chemistry, pp. s419-s421.
[9] C. Vitale-Brovarone, M. Miola, C. Balagna, and E. Verné, "3D-glass–ceramic scaffolds with antibacterial properties for bone grafting," Chemical Engineering Journal, vol. 137, no. 1, pp. 129-136, 2008.
[10] J. Frühauf, E. Gaertner, and E. Jaensch, "Silicon as a plastic material," Journal of Micromechanics and Microengineering, vol. 9, no. 4, p. 305, 1999.
[11] U. Loeschner, H. Exner, E. Gaertner, and J. Fruehauf, "Laser bending of silicon," in Photon Processing in Microelectronics and Photonics II, 2003, vol. 4977: International Society for Optics and Photonics, pp. 86-93.
[12] E. Gärtner, J. Frühauf, U. Löschner, and H. Exner, "Laser bending of etched silicon microstructures," Microsystem Technologies, vol. 7, no. 1, pp. 23-26, 2001.
[13] 吴东江 et al., "长脉宽脉冲激光硅片弯曲成形试验," 2007.
[14] X. R. Zhang and X. Xu, "Microscale bending of brittle materials using pulsed and CW lasers," in Photon Processing in Microelectronics and Photonics, 2002, vol. 4637: International Society for Optics and Photonics, pp. 291-296.
[15] E. Reutzel et al., "Development of a system for the laser assisted forming of plate," in International Congress on Applications of Lasers & Electro-Optics, 2001, vol. 2001, no. 1: Laser Institute of America, pp. 779-788.
[16] D. Wu, G. Ma, F. Niu, and D. Guo, "Temperature gradient mechanism on laser bending of borosilicate glass sheet," Journal of manufacturing science and engineering, vol. 132, no. 1, 2010.
[17] D. Wu, Q. Zhang, G. Ma, Y. Guo, and D. Guo, "Laser bending of brittle materials," Optics and Lasers in Engineering, vol. 48, no. 4, pp. 405-410, 2010.
[18] D.-j. WU, F.-y. NIU, S. LIU, G.-y. MA, Y. ZHU, and X.-y. WANG, "Borosilicate glass film bending by CO_2 CW-laser [J]," Optics and Precision Engineering, vol. 8, 2008.
[19] Y. Guo, Y. Shi, X. Wang, R. Sun, and X. Li, "A method to realize high-precision and large laser thermal bending angle," Journal of Manufacturing Processes, vol. 62, pp. 168-178, 2021.
[20] M. Geiger and F. Vollertsen, "The mechanisms of laser forming," CIRP annals, vol. 42, no. 1, pp. 301-304, 1993.
[21] H. Arnet and F. Vollertsen, "Extending laser bending for the generation of convex shapes," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 209, no. 6, pp. 433-442, 1995.
[22] C. Liu, Y. L. Yao, and V. Srinivasan, "Optimal process planning for laser forming of doubly curved shapes," J. Manuf. Sci. Eng., vol. 126, no. 1, pp. 1-9, 2004.
[23] G. Dearden and S. Edwardson, "Laser assisted forming for ship building," SAIL, Williamsburg, VA, pp. 2-4, 2003.
[24] W. Li and Y. L. Yao, "Laser bending of tubes: mechanism, analysis, and prediction," J. Manuf. Sci. Eng., vol. 123, no. 4, pp. 674-681, 2001.
[25] P. Cheng et al., "Laser forming of varying thickness plate—Part I: Process analysis," 2006.
[26] H. Shen and F. Vollertsen, "Modelling of laser forming–An review," Computational Materials Science, vol. 46, no. 4, pp. 834-840, 2009.
[27] M. C. Jamil, M. Sheikh, and L. Li, "A study of the effect of laser beam geometries on laser bending of sheet metal by buckling mechanism," Optics & Laser Technology, vol. 43, no. 1, pp. 183-193, 2011.
[28] R. Kant, P. M. Bhuyan, and S. Joshi, "Experimental studies on TGM and BM dominated curvilinear laser bending of aluminum alloy sheets," in Lasers Based Manufacturing: Springer, 2015, pp. 69-91.
[29] F. Vollertsen, I. Komel, and R. Kals, "The laser bending of steel foils for microparts by the buckling mechanism-a model," Modelling and Simulation in Materials Science and Engineering, vol. 3, no. 1, p. 107, 1995.
[30] H. Shen, "Mechanism of laser micro-adjustment," Journal of Physics D: Applied Physics, vol. 41, no. 24, p. 245106, 2008.
[31] G. Dearden and S. Edwardson, "Some recent developments in two-and three-dimensional laser forming for ‘macro’and ‘micro’applications," Journal of Optics A: Pure and Applied Optics, vol. 5, no. 4, p. S8, 2003.
[32] J. Magee, K. Watkins, W. Steen, R. Cooke, and J. Sidhu, "Development of an integrated laser forming demonstrator system for the aerospace industry," in International Congress on Applications of Lasers & Electro-Optics, 1998, vol. 1998, no. 1: Laser Institute of America, pp. E141-E150.
[33] J. Frühauf, E. Gärtner, and E. Jänsch, "New aspects of the plastic deformation of silicon–prerequisites for the reshaping of silicon microelements," Applied physics A, vol. 68, no. 6, pp. 673-679, 1999.
[34] X. R. Zhang and X. Xu, "High precision microscale bending by pulsed and CW lasers," J. Manuf. Sci. Eng., vol. 125, no. 3, pp. 512-518, 2003.
[35] G. Chen, X. Xu, C. C. Poon, and A. C. Tam, "Laser-assisted microscale deformation of stainless steels and ceramics," Optical Engineering, vol. 37, no. 10, pp. 2837-2842, 1998.
[36] S. A. Self, "Focusing of spherical Gaussian beams," Applied optics, vol. 22, no. 5, pp. 658-661, 1983.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2022-5-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明