博碩士論文 108323040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.145.162.181
姓名 吳緯振(Wei-Cheng Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
(The study of graphene-based Hall-effect biosensors applied to rapid and label-free DNA)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前透過化學氣相沉積法於金屬基板上合成大面積石墨烯並將其轉印至絕緣基板製備成生醫感測器已是成熟的技術,藉由石墨烯優異的電學特性(極高的導電性以及載子遷移率)可作為生醫感測元件的主要平台。此外由於石墨烯表面之π軌域電子容易與DNA之苯環結構重疊並產生π-π堆疊,因此在現今生醫感測應用上可結合無標記且無官能化改質的優點於簡易感測流程。然而現今常用之石墨烯生醫感測元件皆有所瓶頸,如常見的螢光式的感測方式需要螢光分子進行標記,製備上較為繁瑣;以及液體式閘極(liquid-gate)場效電晶體(field-effect transistor, FET),雖然其能快速且精準擁有檢測結果,但目前研究中發現液體式閘極FET上產生的電雙層會造成電容屏蔽影響檢測準確度。因此開發一種無標記並能解決電容屏蔽影響之檢測方式為目前石墨烯生醫感測研究上首要解決之問題。此外石墨烯為受電荷轉移或靜電效應的作用影響於目前文獻中對其檢測機制仍尚未明確。而DNA與材料間產生靜電排斥導致無標記石墨烯感測器整體所需的感測時間較長也是目前相關研究極需解決之難題。
本實驗利用CVD大面積成長之單層石墨烯於製備生醫感測元件與病毒DNA序列上的苯環π-π堆疊,實現無標記檢測人類皰疹病毒第四型(Epstein-Barr Virus, EBV)之DNA序列,並透過霍爾量測有效避免FET中金屬閘極上電雙層產生的電容屏蔽之影響。此外也針對DNA序列對整體石墨烯以及其表面上造成的影響進行探討,並利用電泳吸附所產生的電場解決靜電排斥造成需耗時的感測程序。研究結果透過霍爾效應搭配電泳吸附的量測線性範圍為1 pM至10 nM、檢量限為1 pM且線性回歸達0.94,顯示此基於石墨烯的霍爾效應感測器對於EBV DNA具有高的感測效能。此外,透過新穎的表面界達電位(Surface zeta potential)分析石墨烯表面和吸附探針與目標DNA的過程,電位從-24.47降低至-33.05 mV,證實DNA序列於石墨烯表面上的電荷積累現象,建立感測機制的探討。利用電泳吸附的方式大幅降低DNA與石墨烯間以及探針DNA與目標DNA間靜電排斥的影響,因此從18個小時大幅縮短整體感測時間至大約5分鐘。
摘要(英) With excellent electrical properties such as high electrical conductivity and carrier mobility, large-area graphene grown by chemical vapor deposition (CVD) technology, which was widely used as the sensing material of bio-sensing platform. By forming a π-π bonding between graphene and the benzene structure of DNA, a label-free and non-functionalized graphene could be realized by use of graphene as the platform material which could significantly simplify the process of the currently used bio-sensing applications. However, several issues such as the cumbersome preparation of fluorescent sensing, the affected detection accuracy of liquid-gate field-effect transistor (FET) due to the formation of double layer capacity, and the relatively long sensing time caused by the electrostatic repulsion between graphene and DNA were still remained and need to be solved urgently. As for the detection mechanism, considering the complex affection of charge transfer and electrostatic effect of graphene, related kinds of literature were still lacking and further research was needed to be clarified.
In this study, a label and functionalize-free graphene-based Epstein-Barr Virus (EBV) DNA sensing device was prepared by the CVD method and followed by the Hall measurement, which could effectively avoid the affection of voltage consumption due to the double layer capacity. In addition, the detection mechanism was further explored and investigated by the measurement of surface charging. Moreover, the electrophoretic adsorption method was introduced to solve the electrostatic repulsion issue. The research results show that with the electrophoretic adsorption, the effective sensing range from 1 pM to 10 nM was achieved together with a low detection limitation of 1 pM and the high reliability of 0.94. Moreover, for the first time, a novel surface zeta potential measurement was used to investigate the conditions of charging accumulation after the immobilization of probe DNA and the hybridization of target DNA, ranging from -24.47 to -29.42 and -33.05 mV, respectively. This could help to explain the sensing mechanism in this study Also, electrophoretic adsorption is used to reduce the influence of electrostatic repulsion between DNA and graphene and probe DNA and target DNA by shortening the sensing time from 18 hours to about 5 minutes.
關鍵字(中) ★ 石墨烯
★ 無標記DNA
★ 霍爾效應
關鍵字(英)
論文目次 學位論文授權書 I
學位論文延後公開申請書 II
指導教授推薦信 III
口試委員審定書 IV
中文摘要 V
Abstract VII
誌謝 IX
目錄 X
圖目錄 XIII
第一章、 緒論 1
第二章、 文獻回顧 2
2-1 石墨烯簡介 2
2-1-1 石墨烯合成方法 4
2-1-1-1物理方法 4
2-1-1-2化學方法 5
2-2 疾病 7
2-2-1 癌症 7
2-2-2 鼻咽癌 (Nasopharyngeal Carcinoma,NPC) 8
2-2-3 Epstein-Barr Virus (EBV) 8
2-2-4 去氧核醣核酸 (Deoxyribonucleic acid,DNA) 10
2-3 早期與現代檢測方式 10
2-3-1 早期檢測方式 11
2-3-2 螢光式生醫感測器 11
2-3-3 電化學感測器 13
2-3-4 石墨烯場效電晶體生醫感測器 15
2-3-4-1背閘極式石墨烯場效電晶體 (Back-gate GFET) 16
2-3-4-2液體閘極式場效電晶體 (Liquid gate FET) 17
2-3-4-3平面閘極式場效電晶體 (Top gate FET or Planar gate FET) 19
2-3-5 石墨烯應用於場效電晶體之基本特性 20
2-3-5-1費米能階(Fermi level) 20
2-3-5-2石墨烯電荷中性點 (Charge neutral point,CNP) 21
2-3-5-3德拜長度 (Debye length) 22
2-3-6 霍爾效應生醫感測器 23
2-4 石墨烯表面之功能化 26
2-4-1 共價功能化 27
2-4-2 非共價功能化 28
2-5 研究動機 30
第三章、 實驗方法與流程及機台介紹 31
3-1 生醫感測器製備流程 31
3-1-1 化學氣相沉積於合成石墨烯 31
3-1-2 濕式蝕刻轉印石墨烯 32
3-1-3 生醫感測晶片製作 33
3-1-4 DNA序列之檢測 34
3-1-5 電泳吸附DNA序列 35
3-2 實驗藥品及材料 36
3-3 機台介紹 36
3-3-1 常壓化學氣相沉積系統 (APCVD) 36
3-3-2 拉曼光譜儀 (Raman spectroscopy, Raman) 37
3-3-3 電子束蒸鍍機 (E-gun evaporation) 38
3-3-4 半導體直流電性量測系統 (I-V system) 39
3-3-5 霍爾量測設備 (Hall measurement system,Hall) 39
3-3-6 X射線光電子能譜儀 (X-ray Photoelectron Spectroscope,XPS) 39
3-3-7 粒徑和界面電位分析儀 39
第四章、 結果與討論 41
4-1 濕式轉印石墨烯之特性分析 41
4-2 探針DNA元素之XPS分析 43
4-3 XPS分析用於探針DNA之密度計算 45
4-3-1 XPS分析磷元素之探針密度 46
4-3-2 XPS分析氮元素之探針密度 48
4-4 石墨烯之表面界達電位(Surface zeta potential)分析 49
4-4-1 表面界達電位隨探針DNA及目標DNA之分析 50
4-4-2 表面界達電位用於閘極效應 (Gate effect)機制探討 51
4-5 霍爾量測用於生醫感測機制探討 53
4-5-1 固定化探針之霍爾量測 54
4-5-2 雜合EBV DNA之霍爾量測 55
4-6 電泳吸附DNA序列之霍爾量測 57
4-6-1 電泳吸附探針DNA之霍爾量測 57
4-6-2 電泳吸附EBV DNA之霍爾量測 58
第五章、 結論 60
第六章、 未來工作 61
參考資料 62
參考文獻 1. Waiwijit, U., D. Phokaratkul, J. Kampeera, T. Lomas, A. Wisitsoraat, W. Kiatpathomchai and A.J.J.o.b. Tuantranont, Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection. 2015. 212: p. 44-49.
2. Zhang, S., N. Zhang, Y. Zhao, T. Cheng, X. Li, R. Feng, H. Xu, Z. Liu, J. Zhang and L.J.C.S.R. Tong, Spotting the differences in two-dimensional materials–the Raman scattering perspective. 2018. 47(9): p. 3217-3240.
3. Nagar, B., M. Balsells, A. De La Escosura-Muñiz, P. Gomez-Romero, A.J.B. Merkoçi and Bioelectronics, Fully printed one-step biosensing device using graphene/AuNPs composite. 2019. 129: p. 238-244.
4. Mao, S., J. Chang, H. Pu, G. Lu, Q. He, H. Zhang and J.J.C.S.R. Chen, Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. 2017. 46(22): p. 6872-6904.
5. Chen, H., P. Chen, J. Huang, R. Selegård, M. Platt, A. Palaniappan, D. Aili, A.I.Y. Tok and B.J.A.c. Liedberg, Detection of matrilysin activity using polypeptide functionalized reduced graphene oxide field-effect transistor sensor. 2016. 88(6): p. 2994-2998.
6. Sun, Y., Z. Peng, H. Li, Z. Wang, Y. Mu, G. Zhang, S. Chen, S. Liu, G. Wang, C.J.B. Liu and Bioelectronics, Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. 2019. 137: p. 255-262.
7. Novoselov, K.S., A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A.J.s. Firsov, Electric field effect in atomically thin carbon films. 2004. 306(5696): p. 666-669.
8. Tyagi, D., H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Z. Ouyang and H.J.N. Zhang, Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. 2020. 12(6): p. 3535-3559.
9. Lee, Y., S. Bae, H. Jang, S. Jang, S.-E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong and J.-H.J.N.l. Ahn, Wafer-scale synthesis and transfer of graphene films. 2010. 10(2): p. 490-493.
10. Saeed, M., Y. Alshammari, S.A. Majeed and E.J.M. Al-Nasrallah, Chemical vapour deposition of graphene—Synthesis, characterisation, and applications: A review. 2020. 25(17): p. 3856.
11. Mannoor, M.S., H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto and M.C.J.N.c. McAlpine, Graphene-based wireless bacteria detection on tooth enamel. 2012. 3(1): p. 1-9.
12. Xie, J., Q. Chen, H. Shen and G.J.J.o.t.E.S. Li, Wearable graphene devices for sensing. 2020. 167(3): p. 037541.
13. Huang, C.-H., W.-T. Huang, T.-T. Huang, S.-H. Ciou, C.-F. Kuo, A.-H. Hsieh, Y.-S. Hsiao and Y.-J.J.A.A.E.M. Lee, Dual-Gate Enhancement of the Sensitivity of miRNA Detection of a Solution-Gated Field-Effect Transistor Featuring a Graphene Oxide/Graphene Layered Structure. 2021. 3(10): p. 4300-4307.
14. Kantar, B.B., M.t.n. Öztürk and H.J.B.o.M.S. Cetin, The effects of lithographic residues and humidity on graphene field effect devices. 2017. 40(1): p. 239-245.
15. Kumar, S., S. Kaushik, R. Pratap, S.J.A.a.m. Raghavan and interfaces, Graphene on paper: a simple, low-cost chemical sensing platform. 2015. 7(4): p. 2189-2194.
16. Watson, A.J., W. Lu, M. Guimaraes and M.J.D.M. Stöhr, Transfer of large-scale two-dimensional semiconductors: Challenges and developments. 2021.
17. Hiltunen, V.-M., P. Koskinen, K.K. Mentel, J. Manninen, P. Myllyperkiö, M. Pettersson, A.J.n.D.M. Johansson and Applications, Ultrastiff graphene. 2021. 5(1): p. 1-7.
18. Cao, K., S. Feng, Y. Han, L. Gao, T. Hue Ly, Z. Xu and Y.J.N.c. Lu, Elastic straining of free-standing monolayer graphene. 2020. 11(1): p. 1-7.
19. Lee, C., X. Wei, J.W. Kysar and J.J.s. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. 2008. 321(5887): p. 385-388.
20. Jo, G., M. Choe, S. Lee, W. Park, Y.H. Kahng and T.J.N. Lee, The application of graphene as electrodes in electrical and optical devices. 2012. 23(11): p. 112001.
21. Vermisoglou, E., D. Panáček, K. Jayaramulu, M. Pykal, I. Frébort, M. Kolář, M. Hajdúch, R. Zbořil, M.J.B. Otyepka and Bioelectronics, Human virus detection with graphene-based materials. 2020. 166: p. 112436.
22. Vikrant, K., N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim and A.J.B. Deep, Nanomaterials as efficient platforms for sensing DNA. 2019. 214: p. 119215.
23. Shen, C., X. Li, N. Li, K. Xie, J.-g. Wang, X. Liu, B.J.A.a.m. Wei and interfaces, Graphene-boosted, high-performance aqueous Zn-ion battery. 2018. 10(30): p. 25446-25453.
24. Yi, M. and Z.J.J.o.M.C.A. Shen, A review on mechanical exfoliation for the scalable production of graphene. 2015. 3(22): p. 11700-11715.
25. Cui, X., C. Zhang, R. Hao and Y.J.N. Hou, Liquid-phase exfoliation, functionalization and applications of graphene. 2011. 3(5): p. 2118-2126.
26. Kataria, S., S. Wagner, J. Ruhkopf, A. Gahoi, H. Pandey, R. Bornemann, S. Vaziri, A.D. Smith, M. Ostling and M.C.J.p.s.s. Lemme, Chemical vapor deposited graphene: From synthesis to applications. 2014. 211(11): p. 2439-2449.
27. Thakur, S. and N.J.C. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. 2015. 94: p. 224-242.
28. Béraud, A., M. Sauvage, C.M. Bazán, M. Tie, A. Bencherif and D.J.A. Bouilly, Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. 2021.
29. Chen, Y.-P., A.T. Chan, Q.-T. Le, P. Blanchard, Y. Sun and J.J.T.L. Ma, Nasopharyngeal carcinoma. 2019. 394(10192): p. 64-80.
30. Odumade, O.A., K.A. Hogquist and H.H.J.C.m.r. Balfour Jr, Progress and problems in understanding and managing primary Epstein-Barr virus infections. 2011. 24(1): p. 193-209.
31. Watson, J.D. and F.H. Crick. The structure of DNA. in Cold Spring Harbor symposia on quantitative biology. 1953. Cold Spring Harbor Laboratory Press.
32. Wise, M.G., D.L. Suarez, B.S. Seal, J.C. Pedersen, D.A. Senne, D.J. King, D.R. Kapczynski and E.J.J.o.c.m. Spackman, Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. 2004. 42(1): p. 329-338.
33. Ryoo, S.-R., J. Lee, J. Yeo, H.-K. Na, Y.-K. Kim, H. Jang, J.H. Lee, S.W. Han, Y. Lee and V.N.J.A.n. Kim, Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). 2013. 7(7): p. 5882-5891.
34. Liu, B., Y. Zhao, Y. Jia and J.J.J.o.t.A.C.S. Liu, Heating Drives DNA to Hydrophobic regions while freezing drives DNA to hydrophilic regions of graphene oxide for highly robust biosensors. 2020. 142(34): p. 14702-14709.
35. Singh, P., S.K. Pandey, J. Singh, S. Srivastava, S. Sachan and S.K.J.N.-m.l. Singh, Biomedical perspective of electrochemical nanobiosensor. 2016. 8(3): p. 193-203.
36. Cesewski, E., B.N.J.B. Johnson and Bioelectronics, Electrochemical biosensors for pathogen detection. 2020. 159: p. 112214.
37. Güner, A., E. Çevik, M. Şenel and L.J.F.c. Alpsoy, An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. 2017. 229: p. 358-365.
38. Hernández, R., C. Vallés, A.M. Benito, W.K. Maser, F.X. Rius, J.J.B. Riu and bioelectronics, Graphene-based potentiometric biosensor for the immediate detection of living bacteria. 2014. 54: p. 553-557.
39. Kalantar-zadeh, K. and J.Z.J.A.S. Ou, Biosensors based on two-dimensional MoS2. 2016. 1(1): p. 5-16.
40. Pumera, M. and A.H.J.T.T.i.A.C. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. 2014. 61: p. 49-53.
41. Bartošík, M., J.i. Mach, J. Piastek, D. Nezval, M. Konečný, V.c. Švarc, K. Ensslin and T.s.J.A.s. Šikola, Mechanism and suppression of physisorbed-water-caused hysteresis in graphene FET sensors. 2020. 5(9): p. 2940-2949.
42. Chen, F., Q. Qing, J. Xia, J. Li and N.J.J.o.t.A.C.S. Tao, Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. 2009. 131(29): p. 9908-9909.
43. Danielson, E., V.A. Sontakke, A.J. Porkovich, Z. Wang, P. Kumar, Z. Ziadi, Y. Yokobayashi, M.J.S. Sowwan and A.B. Chemical, Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles. 2020. 320: p. 128432.
44. Khan, N.I., M. Mousazadehkasin, S. Ghosh, J.G. Tsavalas and E.J.A. Song, An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. 2020. 145(13): p. 4494-4503.
45. Campos, R., J. Borme, J.R. Guerreiro, G. Machado Jr, M.F.t. Cerqueira, D.Y. Petrovykh and P.J.A.s. Alpuim, Attomolar label-free detection of DNA hybridization with electrolyte-gated graphene field-effect transistors. 2019. 4(2): p. 286-293.
46. Guo, B., L. Fang, B. Zhang and J.R.J.I.J. Gong, Graphene doping: a review. 2011. 1(2): p. 80-89.
47. Bagheri, M.H., R.T. Loibl and S.N. Schiffres, Control of Water Adsorption via Electrically Doped Graphene: Effect of Fermi Level on Uptake and H2O Orientation. 2021. 8(18): p. 2100445.
48. Chen, K.-I., B.-R. Li and Y.-T.J.N.t. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. 2011. 6(2): p. 131-154.
49. Hall, E.H.J.A.J.o.M., On a new action of the magnet on electric currents. 1879. 2(3): p. 287-292.
50. Ramsden, E., Hall-effect sensors: theory and application. 2011: Elsevier.
51. Loan, P.T.K., D. Wu, C. Ye, X. Li, V.T. Tra, Q. Wei, L. Fu, A. Yu, L.-J. Li, C.-T.J.B. Lin and Bioelectronics, Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. 2018. 99: p. 85-91.
52. Zhang, X., Q. Jing, S. Ao, G.F. Schneider, D. Kireev, Z. Zhang and W.J.S. Fu, Ultrasensitive field‐effect biosensors enabled by the unique electronic properties of graphene. 2020. 16(15): p. 1902820.
53. Dikin, D.A., S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen and R.S.J.N. Ruoff, Preparation and characterization of graphene oxide paper. 2007. 448(7152): p. 457-460.
54. Ho, K.I., M. Boutchich, C.Y. Su, R. Moreddu, E.S.R. Marianathan, L. Montes and C.S.J.A.M. Lai, A self‐aligned high‐mobility graphene transistor: decoupling the channel with fluorographene to reduce scattering. 2015. 27(41): p. 6519-6525.
55. Hu, Y., J. Shen, N. Li, M. Shi, H. Ma, B. Yan, W. Wang, W. Huang and M.J.P.c. Ye, Amino‐functionalization of graphene sheets and the fabrication of their nanocomposites. 2010. 31(12): p. 1987-1994.
56. Saito, T., M. Tabata, A. Isobayashi, H. Miki, Y. Miyahara and Y.J.L. Sugizaki, Wafer-scalable chemical modification of amino groups on graphene biosensors. 2021. 37(16): p. 4997-5004.
57. Sun, L., G. Yuan, L. Gao, J. Yang, M. Chhowalla, M.H. Gharahcheshmeh, K.K. Gleason, Y.S. Choi, B.H. Hong and Z.J.N.R.M.P. Liu, Chemical vapour deposition. 2021. 1(1): p. 1-20.
58. Casiraghi, C., A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko and A.J.N.l. Ferrari, Raman spectroscopy of graphene edges. 2009. 9(4): p. 1433-1441.
59. MORI, S. and H.J.f. OKAMOTO, A unified theory of determining the electrophoretic velocity of mineral particles in the rectangular micro-electrophoresis cell. 1980. 27(3): p. 117-126.
60. Tian, M., M. Qiao, C. Shen, F. Meng, L.A. Frank, V.V. Krasitskaya, T. Wang, X. Zhang, R. Song and Y.J.A.S.S. Li, Highly-sensitive graphene field effect transistor biosensor using PNA and DNA probes for RNA detection. 2020. 527: p. 146839.
61. Hwang, M.T., M. Heiranian, Y. Kim, S. You, J. Leem, A. Taqieddin, V. Faramarzi, Y. Jing, I. Park and A.M.J.N.c. van der Zande, Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. 2020. 11(1): p. 1-11.
62. Zheng, C., L. Huang, H. Zhang, Z. Sun, Z. Zhang, G.-J.J.A.a.m. Zhang and interfaces, Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. 2015. 7(31): p. 16953-16959.
63. Chen, T.-Y., P.T.K. Loan, C.-L. Hsu, Y.-H. Lee, J.T.-W. Wang, K.-H. Wei, C.-T. Lin, L.-J.J.B. Li and Bioelectronics, Label-free detection of DNA hybridization using transistors based on CVD grown graphene. 2013. 41: p. 103-109.
64. Xu, S., S. Jiang, C. Zhang, W. Yue, Y. Zou, G. Wang, H. Liu, X. Zhang, M. Li and Z.J.A.S.S. Zhu, Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor. 2018. 427: p. 1114-1119.
65. Mohanty, N. and V.J.N.l. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. 2008. 8(12): p. 4469-4476.
66. Fu, W., C. Nef, A. Tarasov, M. Wipf, R. Stoop, O. Knopfmacher, M. Weiss, M. Calame and C.J.N. Schönenberger, High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. 2013. 5(24): p. 12104-12110.
67. Heller, I., A.M. Janssens, J. Männik, E.D. Minot, S.G. Lemay and C.J.N.l. Dekker, Identifying the mechanism of biosensing with carbon nanotube transistors. 2008. 8(2): p. 591-595.
68. Papamatthaiou, S., P. Estrela and D.J.S.r. Moschou, Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems. 2021. 11(1): p. 1-9.
69. Heller, I., S. Chatoor, J. Männik, M.A. Zevenbergen, C. Dekker and S.G.J.J.o.t.A.C.S. Lemay, Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. 2010. 132(48): p. 17149-17156.
70. Ohno, Y., K. Maehashi, Y. Yamashiro and K.J.N.l. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. 2009. 9(9): p. 3318-3322.
71. Lin, C.T., P.T.K. Loan, T.Y. Chen, K.K. Liu, C.H. Chen, K.H. Wei and L.J.J.A.F.M. Li, Label‐Free Electrical detection of DNA hybridization on graphene using Hall Effect measurements: revisiting the sensing mechanism. 2013. 23(18): p. 2301-2307.
72. Li, L., D. Peng, X. Chen, L. Liu and A.J.A.A. Tian, Theoretical investigation on the adsorption of DNA bases on B/N-doped SWCNT surface by the first principle. 2017. 7(10): p. 105004.
73. https://online.senao.com.tw/Article/detail/1377
74. https://case.ntu.edu.tw/blog/?p=35508
指導教授 蘇清源 審核日期 2022-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明