博碩士論文 109323089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.143.254.224
姓名 江紹瑜(Shao-Yu Jiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用面投影微立體光固化技術開發卡匣式陶瓷基板生胚製造系統
(Development of Cassette-type Production System for Green Ceramic Substrate by Projection Micro Stereolithography Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 隨著科技日新月異的發展,高功率、高頻元件之需求日益增加。陶瓷具有高強度、 高穩定性與高熱傳導性等優點,是高功率電子產品的優良載板。陶瓷基板過去常使用雷 射與機械等方式進行加工,過程中往往因為材料的硬脆特性面臨許多加工上的困難。
面投影微立體光固化(Projection Micro-stereolithography, PμSL)技術是十分有前景的 積層製造(Additive Manufacturing, AM)技術之一,其透過微縮化的投影達到微米尺度的 列印。通過學者的改良更俱備了跨尺度製造的能力,彌補過往微米製造上的缺點,使微 米解析度之複雜結構可有更多方面的應用。
單層陶瓷基板的優點是設計簡單及製造成本低,若能使用積層製造以模組化方法一 次成型,並快速替換則有利於提升生產速度。本研究以PμSL 技術為基礎,開發卡匣式 陶瓷基板生胚製造系統,以積層製造方式避免過去雷射加工與機械加工可能之損傷與加 工限制,並利用卡匣式的設計簡化製程與提升生產速度。軟體部分使用C#程式語言開 發,將所有軟硬體設備整合至人機控制介面,並設計路徑生成程式給予使用者快速且直 覺的製造介面。為了解決卡匣替換造成的失焦問題,研究中透過OpenCV 函數達到自動 對焦,以此找出列印範圍內三點之垂直座標,並透過公式推算水平修正量,經驗證水平 度小於1.863 μm/mm。以不同縫合寬度與灰度做列印,量測結果並記錄數據,提出有效 之列印參數。為了改善製造方形孔洞時的失真,研究中設計圖形補償方法,並測試了不 同參數,使陶瓷漿料之面積匹配率從69.56%改善至96.66%。最後使用自行開發之卡匣 式陶瓷基板生胚製造系統根據上述參數實現最小34 μm 孔洞特徵之氧化鋯陶瓷基板生 胚,以驗證機台之功效。
摘要(英) With the rapid development of science and technology, the demand for high-power and high-frequency components is increasing. Ceramic has the advantages of high strength, high stability and high thermal conductivity. It is an excellent carrier for high-power electronic products. In the past, ceramic substrates were often processed by laser and mechanical methods, which often caused many processing difficulties due to the hard and brittle properties of the material.
Projection Micro-stereolithography (PμSL) technology is one of the most promising additive manufacturing technologies. It achieves micron-resolution printing through miniaturized projection. It solves the manufacturing difficulties of complex and tiny components in the past. At the same time, through the improvement of scholars, the ability of cross-scale manufacturing has been prepared which can make up for the shortcomings of the past micron manufacturing. So that the complex structure with micron resolution can have more applications.
The advantages of single-layer ceramic substrates are simple in design and low in manufacturing cost. When using the additive manufacturing method, if they can be formed in the form of cassettes at one time and replaced quickly, the production speed will be improved.
Therefore, this research develops a cassette-type green ceramic substrate production system by PμSL technology, which avoids the possible damage and processing limitations of laser processing and machining in the past by means of addtive manufacturing, and utilizes the cassette-type design to simplify the process and improve productivity. The software is developed using the C# programming language, integrating all software and hardware devices into the human-machine interface, and designing a path production program to give users a fast and intuitive interface. In order to solve the problem of out-of-focus caused by the replacement of the cassette, the OpenCV function is used to achieve automatic focusing in the research, so as to find the vertical coordinates of three points in the printing area, and calculate the horizontal correction amount through the formula. It is verified that the horizontal degree is less than 1.863 μm/mm. Print with different overlapping widths and grayscales, measure the results and record the data, and propose valid parameters. In order to improve the distortion when printing square holes, a pattern correction method was designed in the study, and different parameters were tested to improve the area matching rate of the ceramic from 69.56% to 96.66%. Finally, the self-developed cassette-type green ceramic substrate production system is used to realize the zirconia green ceramic substrate with the minimum 34 μm hole according to the above parameters to verify the function of the machine.
關鍵字(中) ★ PμSL
★ 陶瓷漿料
★ 氧化鋯
★ 光致聚合
關鍵字(英) ★ Micro-stereolithography
★ Ceramic slurry
★ ZrO2
★ Photopolymerization
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機與目的 11
1-4 論文架構 12
第二章 研究與理論說明 13
2-1 光子吸收與光致聚合反應簡介 13
2-2 光固化積層製造技術簡介 15
2-3 比爾朗伯定律簡介 21
2-4 圖像掃描簡介 22
2-5 光學鄰近效應簡介 23
2-6 精密陶瓷與陶瓷基板簡介 28
2-7 Laplacian 運算子簡介 30
第三章、系統架構與實驗方法 32
3-1 卡匣式陶瓷基板製造系統配置與設計 32
3-2 水平校正方法 46
3-3 人機介面 51
3-4 圖像掃描與縫合方法 57
3-5 能量與聚合深度實驗方法 63
3-6 光學鄰近修正方法 69
3-7 使用之光固化材料介紹 73
第四章 實驗結果與討論 75
4-1 能量與固化深度分析 75
4-2 圖像掃描與縫合結果 80
4-3 水平校正結果 83
4-4 光學鄰近修正結果 87
4-5 卡匣式光固化微投影系統之實驗結果 90
第五章 結論與未來展望 93
5-1 結論 93
5-2 未來展望 94
參考文獻 95
參考文獻 [1] H. Deville and F.Wohler, "Ueber das Stickstoffsilicium", European Journal of Organic Chemistry, Vol. 104, pp. 256, 1857.
[2] W. J. Clegg, K. Kendall, N. McN alford, T. W. Button and J. D. Birchall, “A Simple Way to Make Tough Ceramics”, Nature, Vol. 347, pp. 455-457, 1990.
[3] A. Nag, R. R. Rao and P. K. Panda, “High Temperature Ceramic Radomes (HTCR)-A Review”, Ceramics International, Vol. 47, pp. 20793-20806, 2021.
[4] D. D. L. Chung and C. Zweben, “Composites for Electronic Packaging and Thermal Management”, Comprehensive Composite Materials, Vol. 6, pp. 701-725, 2000.
[5] Y. C. Lee and M. H. Cheng, “Co2 Laser Processing on Ceramic Substrates of Light Emitting Diode Assisted by Compressed Gas”, Machining Science and Technology, Vol. 19, pp. 400-415, 2015.
[6] M. Mutlu, E. Kacar, E. Akman, C. K. Akkan, P. Demir and A. Demir,” Effects of The Laser Wavelength on Drilling Process of Ceramic Using Nd:YAG Laser”, Journal of Laser Micro Nanoengineering, Vol. 4, pp. 84-88, 2009.
[7] E. Macdonald, R. Salas, D. Espalin, M. perezm, E. Aguilera, D. Muse and R. B. Wicker, “3D Printing for the Rapid Prototyping of Structural Electronics”, IEEE Access, Vol. 2, pp. 234-242, 2014.
[8] J. Ni, H. Ling, S. Zhang, Z. Wang, Z. Peng, C. Benyshek, R. Zan, A. K. Miri, Z. Li and X. Zhang, “Three-dimensional Printing of Metals for Biomedical Applications”, Materials Today Bio, Vol. 3, 100024, 2019.
[9] LR. Yadav, S. V. Chandran, K. Lavanya and N. Selvamurugan, “Chitosan-based 3Dprinted Scaffolds for Bone Tissue Engineering”, International Journal of Biological Macromolecules, Vol. 183, pp. 1925-1938, 2021.
[10] R. Raman, B. Bhaduri, M. Mir, A. Shkumatov, M. K. Lee, G. Popescu, H. Kong and R. Bashir, “High-Resolution Projection Microstereolithography for Patterning of Neovasculature”, Advanced Healthcare Materials, Vol. 5, pp. 610-619, 2016.
[11] Q. M. Wang, J. A. Jackson, Q. Ge, J. B. Hopkins, C. M. Spadaccini and N. X. Fang, “Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion”, Physical Review Letters, Vol. 117, 175901, 2016.
[12] S. Babaee, J. Shim, J. C. Weaver, E. R. Chen, N. Patel and K. Bertoldi, “3D Soft Metamaterials with Negative Poisson’s Ratio”, Advanced Materials, Vol. 25, pp. 5044-5049, 2013.
[13] C. Sun, N. Fang, D. M. Wu and X. Zhang, “Projection Micro-stereolithography using Digital Micro-mirror Dynamic Mask”, Sensors and Actuators – A:Physical, Vol. 121, pp. 113-120, 2004.
[14] H. Lee, C. G. Xia and N. X. Fang, “First Jump of Microgel;Actuation Speed Enhancement by Elastic Instability”, Soft Matter, Vol. 6, pp. 4342-4345, 2010.
[15] D, Han., Z. C. Lu, S. A. Chester and H. Lee, “Micro 3D Printing of a Temperature-Responsive Hydrogel using Projection Micro-stereolithography”, Scientific Reports, Vol. 8, 1963, 2018.
[16] ISO/ASTM 52900, Additive Manufacturing General Principles Terminology, 2015.
[17] Kodama Hideo, “Automatic Method for Fabricating a Three-dimensional Plastic Model with Photo Hardening Polymer”, Review of Scientific Instruments, Vol. 52, 1770, 1981.
[18] C. W. Hull, (1984), U.S. Patent, No. US4575330A.
[19] B. J. de Gans, P. C. Duineveld and U. S. Schubert, “Inkjet Printing of Polymers:State of the Art and Future Developments”, Advanced Materials, Vol. 16, pp. 203-213, 2004.
[20] N. A. Fountas and N. M. Vaxevanidis, “Optimization of Fused Deposition Modeling Process using a Virus-evolutionary Genetic Algorithm”, Computers in Industry, Vol. 125, 103371, 2021.
[21] L. del-Mazo-Barbara and M. P. Ginebra,“Rheological Characterisation of Ceramic Inks for 3D Direct Ink Writing:A Review”, Journal of the European Ceramic Society, Vol. 41, pp. 18-33, 2021.
[22] D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, “Additive Manufacturing of Metals”, Acta Materialia, Vol. 117, pp. 371-392, 2016.
[23] R. J. Friel, “Power Ultrasonics for Additive Manufacturing and Consolidating of Materials”. Power Ultrasonics, Vol. 13, pp. 313-335, 2015.
[24] Qi Ge, Z. Li, Z. L. Wang, K. Kowsari, W. Zhang, X. He, J. L. Zhou and N. X. Fang, “Projection Micro-stereolithography Based 3D Printing and Its Applications”, International Journal of Extreme Manufacturing, Vol. 2, 022004, 2020.
[25] X. Yan and P. Gu, “A Review of Rapid Prototyping Technologies and Systems”, Computer-Aided Design, Vol. 28, pp. 307-318, 1996.
[26] A. Bertsch, S. Zissi, J. Y. Jezequel, S. Corbel and J. Andre, “Micro-stereophotolithography Using a Liquid Crystal Display as Dynamic Mask-generator”. Microsystem Technologies, Vol. 3, pp. 42-47, 1997.
[27] J. M. DeSimone, (2014), U.S. Patent, No. US20150072293A1.
[28] X. Y. Zheng, J. Deotte, M. P. Alonso, G. R. Farquar, T. H. Weisgraber, S. Gemberling, H. Lee, N. Fang and C. M. Spadaccini, “Design and Optimization of a Light-emitting Diode Projection Micro-stereolithography Three-dimensional Manufacturing System”, Review of Scientific Instruments, Vol. 83, 125001, 2012.
[29] M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett and L. Cronin, “Development of a 3D Printer Using Scanning Projection Stereolithography”, Scientific Reports, Vol. 5, 9875, 2015.
[30] R. He, J. Landowne, J. Currie, J. Amoah, W. Shi, D. Yunus and Y. L. Liu, “Three-dimensional Printing of Large Objects with High Resolution by Scanning Lithography”, The International Journal of Advanced Manufacturing Technology, Vol. 105, pp. 4147-4157, 2019.
[31] X. Y. Zheng, W. Smith, J. Jackson, B. Moran, H. C. Cui, D. Chen, J. C. Ye, N. Fang, N. Rodriguez, T. Weisgraber and C. M. Spadaccini, “Multiscale Metallic Metamaterials”, Nature Materials, Vol. 15, pp. 1100-1106, 2016.
[32] Y. F. Zhang, N. B. Zhang, H. Hingorani, N. Y. Ding, D. Wang, C. Yuan, B. Zhang, G. Y. Gu and Q. Ge, “Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing”, Advanced Functional Materials, Vol. 29, 1806698, 2019.
[33] B. Zhang, S. Y. Li, H. Hingorani, A. Serjouei. L. Larush et al, “Highly Stretchable Hydrogels for UV Curing Based High-resolution Multimaterial 3D Printing”, Journal of Materials Chemistry B, Vol. 6, pp. 3246-3253, 2018.
[34] D. Han, C. Yang, N. X. Fang and H. Lee, “Rapid Multi-material 3D Printing with Projection Micro-stereolithography using Dynamic Fluidic Control”, Additive Manufacturing, Vol. 27, pp. 606-615, 2019.
[35] K. Kowsari, S. Akbari, D. Wang, N. X. Fang and Q. Ge1, “High-efficiency Highresolution Multimaterial Fabrication for Digital Light Processing-based Threedimensional Printing”, 3D Printing and Additive Manufacturing, Vol. 5, pp. 185-193, 2018.
[36] M. Schwentenwein and J. Homa, “Additive Manufacturing of Dense Alumina Ceramics”, International Journal of Applied Ceramic Technology, Vol. 12, pp. 1-7, 2015.
[37] J. H. Liu, J. B. Liu, Q. Y. Deng, J. H. Feng, S. L. Zhou and S. Hu, “Intensity Modulation Based Optical Proximity Optimization for the Maskless Lithography”, Optics Express, Vol. 28, pp. 548-557, 2020.
[38] X. W. Wan and R. Menon, “Proximity-effect Correction for 3D Single-photon Optical Lithography”, Applied Optics, Vol. 55, pp. A1~A7, 2016.
[39] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪家昌、蔡明忠、賴維祥、鄭逸琳、洪基彬、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩,3D列印:積層製造技術與應用,新北市:全華圖書,2018年。
[40] R. D. Carl, J. B. Joseph, (1986), U.S. Patent, No. US4938816A.
[41] S. Scott Crump, (1989), U.S. Patent, No. US5121329A.
[42] S. Kawata, H. B. Sun, T. Tanaka and K. Takada, “Finer Features for Functional Microdevices”, Nature, Vol. 412, pp. 697-698, 2001.
[43] A. Gu and A. Zakhor, “Optical Proximity Correction with Linear Regression”, IEEE Transactions on Semiconductor Manufacturing, Vol. 21, pp. 263-271, 2008.
[44] T. Matsunawa, B. Yu and D. Z. Pan, “Optical Proximity Correction with Hierarchical Bayes Model”, Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 15, 021009, 2016.
[45] J. N. Calata, G. Q. Lu and T. J. Chuang, “Constrained Sintering of Glass, Glass-ceramic and Ceramic Coatings on Metal Substrates”, Surface and Interface Analysis, Vol. 31, pp. 673-681, 2001.
[46] N. Chasserio, S. Guillemet-Fritsch, T. Lebey and S. Dagdag, “Ceramic Substrates for High-temperature Electronic Integration”, Journal of Electronic Materials, Vol. 38, pp. 164-174, 2009.
[47] Laplace Operator OpenCV Documentation, (2020), Theory of Laplace Operator, Retrieved from https://docs.opencv.org/3.4/d5/db5/tutorial_laplace_operator.html (May 27, 2022).
[48] C. W. Ha, P. Prabhakaran and Y. Son, “3D-printed Polymer/Metal Hybrid Microstructures with Ultraprecision for 3D Microcoils”. 3D Printing and Additive Manufacturing, Vol. 6, pp. 165-170, 2019.
[49] S. K. Kim and C. A. Guymon, “Effects of Polymerizable Organoclays on Oxygen Inhibition of Acrylate and Thiol-acrylate Photopolymerization”, Polymer Science, Vol. 53, pp. 1640-1650, 2012.
[50] Y. H. Li, Y. Chen, M. L. Wang, L. Li, H. D. Wu, F. P. He and S. H. Wu, “The Cure Stereolithography Performance of Modified ZrO2 Coated by Paraffin via Projection Based Stereolithography”, Ceramics International, Vol. 45, pp. 4084-4088, 2018.
[51] M. Schwentenwein and J. Homa, “Additive Manufacturing of Dense Alumina Ceramics”, International Journal of Applied Ceramic Technology, Vol. 12, pp. 1-7, 2015.
[52] Material Data Sheet Standard, (2016), Material Properties Data, Retrieved from https: //formlabs-media.formlabs.com/datasheets/Standard-DataSheet.pdf (May 26, 2022).
[53] J. W. Halloran, V. Tomeckova, S. Gentry, S. Das, P. Cilino, D. J. Yuan, R. Guo, A. Rudraraju, P. Shao, T. Wu, T. R. Alabi, W. Baker, D. Legdzina, D. Wolski, W. R. Zimbeck and D. Long, “Photopolymerization of Powder Suspensions for Shaping Ceramics”, International Conference on Ceramic Processing Science, Vol. 31, pp. 2613-2619, 2011.
指導教授 廖昭仰(Chao-Yang Liao) 審核日期 2022-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明