參考文獻 |
1. Peralta-Videa, J. R.; Zhao, L.; Lopez-Moreno, M. L.; de la Rosa, G.; Hong, J.; Gardea-Torresdey, J. L., Nanomaterials and the environment: a review for the biennium 2008-2010. J Hazard Mater 2011, 186, (1), 1-15.
2. Wu, Q.; Miao, W.-s.; Gao, H.-j.; Hui, D., Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, (1), 259-273.
3. Kolahalam, L. A.; Viswanath, I. K.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y., Review on nanomaterials: Synthesis and applications. Mater. Today 2019, 18, 2182-2190.
4. Sharma, V. P.; Sharma, U.; Chattopadhyay, M.; Shukla, V., Advance applications of nanomaterials: a review. Mater. Today 2018, 5, (2), 6376-6380.
5. Roma, J.; Matos, A. R.; Vinagre, C.; Duarte, B., Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna. Mar Environ Res. 2020, 161, 105110.
6. Blaser, S. A.; Scheringer, M.; Macleod, M.; Hungerbuhler, K., Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ. 2008, 390, (2-3), 396-409.
7. Hedberg, J.; Blomberg, E.; Odnevall Wallinder, I., In the Search for Nanospecific Effects of Dissolution of Metallic Nanoparticles at Freshwater-Like Conditions: A Critical Review. Environ Sci Technol. 2019, 53, (8), 4030-4044.
8. Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E., Jr., Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012, 46, (13), 6900-14.
9. Xu, Z.; Zhang, C.; Wang, X.; Liu, D., Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Appl. Bio Mater. 2021, 4, (5), 3985-3999.
10. McGee, C. F., The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. Environ Sci Pollut Res Int. 2020, 27, (25), 31061-31073. 11. Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A., Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756-769.
12. McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D., Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci Total Environ. 2017, 575, 231- 246.
13. Chevallet, M.; Veronesi, G.; Fuchs, A.; Mintz, E.; Michaud-Soret, I.; Deniaud, A., Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biophys. Acta, Gen. Subj. 2017, 1861, (6), 1566- 1577.
14. Reed, R. B.; Zaikova, T.; Barber, A.; Simonich, M.; Lankone, R.; Marco, M.; Hristovski, K.; Herckes, P.; Passantino, L.; Fairbrother, D. H.; Tanguay, R.; Ranville, J. F.; Hutchison, J. E.; Westerhoff, P. K., Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environ. Sci. Technol. 2016, 50, (7), 4018-26.
15. Westerhoff, T. M. B. a. P., Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, (11).
16. Massarsky, A.; Trudeau, V. L.; Moon, T. W., Predicting the environmental impact of nanosilver. Environ. Toxicol. Pharmacol. 2014, 38, (3), 861-73.
17. Gondikas, A. P.; Morris, A.; Reinsch, B. C.; Marinakos, S. M.; Lowry, G. V.; Hsu- Kim, H., Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver
speciation. Environ. Sci. Technol. 2012, 46, (13), 7037-45.
18. Dobias, J.; Bernier-Latmani, R., Silver release from silver nanoparticles in natural waters. Environ. Sci. Technol. 2013, 47, (9), 4140-4146.
19. Levard,C.;Mitra,S.;Yang,T.;Jew,A.D.;Badireddy,A.R.;Lowry,G.V.;Brown, G. E., Jr., Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, (11), 5738-45.
20. Chambers, B. A.; Afrooz, A. R.; Bae, S.; Aich, N.; Katz, L.; Saleh, N. B.; Kirisits, M. J., Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol. 2014, 48, (1), 761-9. 21. Zhang, C.; Hu, Z.; Deng, B., Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res 2016, 88, 403-427. 22. McShan, D.; Ray, P. C.; Yu, H., Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014, 22, (1), 116-127.
23. Peretyazhko, T. S.; Zhang, Q. B.; Colvin, V. L., Size-Controlled Dissolution of Silver Nanoparticles at Neutral and Acidic pH Conditions: Kinetics and Size Changes. Environ. Sci. Technol. 2014, 48, (20), 11954-11961.
24. Gorka,D.E.;Osterberg,J.S.;Gwin,C.A.;Colman,B.P.;Meyer,J.N.;Bernhardt, E. S.; Gunsch, C. K.; DiGulio, R. T.; Liu, J., Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control. Environ. Sci. Technol. 2015, 49, (16), 10093-8.
25. El Badawy, A. M.; Silva, R. G.; Morris, B.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. M., Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011, 45, (1), 283-7.
26. Xiu, Z.-M.; Ma, J.; Alvarez, P. J., Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, (20), 9003-9008.
27. Li, W. R.; Xie, X. B.; Shi, Q. S.; Zeng, H. Y.; Ou-Yang, Y. S.; Chen, Y. B.,Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, (4), 1115-22.
28. Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, (23), 8959-8964.
29. Stephanie C. Hamel, B. B., and Paul J. Lioy, Bioaccessibility of Metals in Soils for Different Liquid to Solid Ratios in Synthetic Gastric Fluid. Environ. Sci. Technol. 1998, 32, (3), 358–362.
30. Reinsch, B. C.; Levard, C.; Li, Z.; Ma, R.; Wise, A.; Gregory, K. B.; Brown, G. E., Jr.; Lowry, G. V., Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 2012, 46, (13), 6992-7000.
31. Levard, C.; Hotze, E. M.; Colman, B. P.; Dale, A. L.; Truong, L.; Yang, X. Y.; Bone, A. J.; Brown, G. E., Jr.; Tanguay, R. L.; Di Giulio, R. T.; Bernhardt, E. S.; Meyer, J. N.; Wiesner, M. R.; Lowry, G. V., Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, (23), 13440-8.
32. Kim, B.; Park, C.-S.; Murayama, M.; Hochella Jr, M. F., Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 2010, 44, (19), 7509-7514.
33. Levard, C.; Reinsch, B. C.; Michel, F. M.; Oumahi, C.; Lowry, G. V.; Brown Jr, G. E., Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, (12), 5260-5266.
34. Morel, F. M.; Hering, J. G., Principles and applications of aquatic chemistry. John Wiley & Sons: 1993.
35. Amyot, M.; Morel, F. M.; Ariya, P. A., Dark oxidation of dissolved and liquid elemental mercury in aquatic environments. Environ. Sci. Technol. 2005, 39, (1), 110- 114.
36. Amyot, M.; Gill, G. A.; Morel, F. M., Production and loss of dissolved gaseous mercury in coastal seawater. Environ. Sci. Technol. 1997, 31, (12), 3606-3611.
37. Cohen-Atiya, M.; Mandler, D., Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. J. Electroanal. Chem. 2003, 550-551, 267- 276.
38. Yamamoto, M., Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments. Chemosphere 1996, 32, (6), 1217-1224.
39. Zheng, W.; Lin, H.; Mann, B. F.; Liang, L.; Gu, B., Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environ. Sci. Technol. 2013, 47, (22), 12827-34.
40. Zheng, W.; Liang, L.; Gu, B., Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ. Sci. Technol. 2012, 46, (1), 292-9. 41. Aiken, G. R.; Hsu-Kim, H.; Ryan, J. N., Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, (8), 3196-201.
42. Zhang, H.; Zheng, Y.; Wang, X. C.; Wang, Y.; Dzakpasu, M., Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. J. Environ. Manage. 2021, 294, 113041.
43. Fernando, I.; Zhou, Y., Concentration dependent effect of humic acid on the transformations of silver nanoparticles. J. Mol. Liq 2019, 284, 291-299.
44. Coates, J. D.; Chakraborty, R.; O’Connor, S. M.; Schmidt, C.; Thieme, J., The geochemical effects of microbial humic substances reduction. Acta Hydrochim. Hydrobiol. 2001, 28, (7), 420-427.
45. Tiwari, V. S.; Oleg, T.; Darbha, G. K.; Hardy, W.; Singh, J. P.; Ray, P. C., Non- resonance SERS effects of silver colloids with different shapes. Chem. Phys. Lett. 2007, 446, (1-3), 77-82.
46. Deng, H.; McShan, D.; Zhang, Y.; Sinha, S. S.; Arslan, Z.; Ray, P. C.; Yu, H., Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ. Sci. Technol. 2016, 50, (16), 8840- 8.
47. Kappler, A.; Benz, M.; Schink, B.; Brune, A., Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 2004, 47, (1), 85-92.
48. Peretyazhko, T.; Sposito, G., Reducing capacity of terrestrial humic acids. Geoderma 2006, 137, (1-2), 140-146.
49. Garg, S.; Rong, H.; Miller, C. J.; Waite, T. D., Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity. Environ. Sci. Technol. 2016, 50, (7), 3890-6.
50. Rong, H.; Garg, S.; Waite, T. D., Transformation of AgCl particles under conditions typical of natural waters: implications for oxidant generation. Environ. Sci. Technol. 2018, 52, (20), 11621-11631.
51. Yang, X.; Gondikas, A. P.; Marinakos, S. M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer, J. N., Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, (2), 1119-27.
52. Benn, T. M.; Westerhoff, P., Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, (11), 4133-4139. 53. Rong, H.; Garg, S.; Waite, T. D., Impact of light and Suwanee River Fulvic Acid on O2 and H2O2 Mediated Oxidation of Silver Nanoparticles in Simulated Natural Waters. Environ. Sci. Technol. 2019, 53, (12), 6688-6698.
54. Rajendran, R. K.; Lin, C. C., Stability and Microbial Toxicity of Silver
Nanoparticles under Denitrifying Conditions. ACS Appl. Mater. Interfaces 2021, 13,(39), 46233-46246.
55. Liu, J.-f.; Yu, S.-j.; Yin, Y.-g.; Chao, J.-b., Methods for separation, identification, characterization and quantification of silver nanoparticles. Trac-trend Anal Chem 2012, 33, 95-106.
56. Wherry, S. A.; Tesoriero, A. J.; Terziotti, S., Factors Affecting Nitrate Concentrations in Stream Base Flow. Environ. Sci. Technol. 2021, 55, (2), 902-911. 57. Gao, J.; Wang, S.; Li, Z.; Wang, L.; Chen, Z.; Zhou, J., High Nitrate Accumulation in the Vadose Zone after Land-Use Change from Croplands to Orchards. Environ. Sci. Technol. 2021, 55, (9), 5782-5790.
58. Liu, S.; Wang, C.; Hou, J.; Wang, P.; Miao, L.; Fan, X.; You, G.; Xu, Y., Effects of Ag and Ag2S nanoparticles on denitrification in sediments. Water Res. 2018, 137, 28-36.
59. Zheng, X.; Wang, J.; Chen, Y.; Wei, Y., Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. J. Hazard. Mater. 2018, 344, 291-298.
60. Wu, L.; Zhu, G.; Zhang, X.; Si, Y., Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci Total Environ 2020, 706, 135711.
61. Lowry, G. V.; Espinasse, B. P.; Badireddy, A. R.; Richardson, C. J.; Reinsch, B. C.; Bryant, L. D.; Bone, A. J.; Deonarine, A.; Chae, S.; Therezien, M.; Colman, B. P.; Hsu-Kim, H.; Bernhardt, E. S.; Matson, C. W.; Wiesner, M. R., Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, (13), 7027-36.
62. Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R., Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, (13), 6893-9.
63. Levard, C.; Reinsch, B. C.; Michel, F. M.; Oumahi, C.; Lowry, G. V.; Brown, GE., Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, (12), 5260-6.
64. Liu, J.; Hurt, R. H., Ion release kinetics and particle persistence in aqueous nano- silver colloids. Environ. Sci. Technol. 2010, 44, (6), 2169-2175.
65. Parkhurst, D. L.; Appelo, C., User′s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-resources investigations report 1999, 99, (4259), 312. 66. Rong, H.; Garg, S.; Waite, T. D., Impact of light and Suwanee River Fulvic Acid on O2 and H2O2 mediated oxidation of silver nanoparticles in simulated natural waters. Environ. Sci. Technol. 2019, 53, (12), 6688-6698.
67. Gunsolus, I. L.; Mousavi, M. P.; Hussein, K.; Bühlmann, P.; Haynes, C. L., Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ. Sci. Technol. 2015, 49, (13), 8078-8086.
68. Yang, X.; Jiang, C.; Hsu-Kim, H.; Badireddy, A. R.; Dykstra, M.; Wiesner, M.; Hinton, D. E.; Meyer, J. N., Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ. Sci. Technol. 2014, 48, (6), 3486-95.
69. Le Ouay, B.; Stellacci, F., Antibacterial activity of silver nanoparticles: a surface science insight. Nano today 2015, 10, (3), 339-354.
70. Alvarez, P. J.; Colvin, V.; Lead, J.; Stone, V., Research priorities to advance eco- responsible nanotechnology. In ACS Publications: 2009.
71. Klüpfel, L.; Piepenbrock, A.; Kappler, A.; Sander, M., Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, (3), 195-200.
72. Durelle T. Scott, D. M. M., Elizabeth L. Blunt-Harris, Sarah E. Kolesar, and
Derek R. Lovley, Quinone Moieties Act as Electron Acceptors in the Reduction ofHumic Substances by Humics-Reducing Microorganisms. Environ. Sci. Technol. 1998, 32, (19), 2984-2989.
73. Maurer, F.; Christl, I.; Hoffmann, M.; Kretzschmar, R., Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver. Environ. Sci. Technol. 2012, 46, (16), 8808-16.
74. Mandler, D.; Kraus-Ophir, S., Self-assembled monolayers (SAMs) for electrochemical sensing. Journal of Solid State Electrochemistry 2011, 15, (7-8), 1535. 75. Feng Dong, C. W., Ai-Jun Miao and Ke Pan Reduction of silver ions to form silver nanoparticles by redox-active organic molecules: coupled impact of the redox state and environmental factors. Environ. Sci. Nano 2020, 8, 269-281.
76. Bobyk, L.; Tarantini, A.; Beal, D.; Veronesi, G.; Kieffer, I.; Motellier, S.; Valsami- Jones, E.; Lynch, I.; Jouneau, P.-H.; Pernet-Gallay, K.; Aude-Garcia, C.; Sauvaigo, S.; Douki, T.; Rabilloud, T.; Carriere, M., Toxicity and chemical transformation of silver nanoparticles in A549 lung cells: dose-rate-dependent genotoxic impact. Environ. Sci. Nano 2021, 8, (3), 806-821.
77. Leung, B. O.; Jalilehvand, F.; Mah, V.; Parvez, M.; Wu, Q., Silver(I) complex formation with cysteine, penicillamine, and glutathione. Inorg. Chem. 2013, 52, (8), 4593-602.
78. Rong, H.; Garg, S.; Waite, T. D., Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation. Environ. Sci. Technol. 2018, 52, (20), 11621-11631. |