博碩士論文 108326026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.191.130.149
姓名 黃茂泓(Mao-Hung Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用US EPA Method 30B探討燃煤電廠之汞排放特性
(Application of US EPA Method 30B for Characterization of Mercury Emission from a Coal-Fired Power Plant)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究基於美國EPA公告之汞採樣參考方法US EPA Method 30B建立汞採樣方法,內容包含採樣流程、採樣儀器設備操作、採樣紀錄表建立、採樣及分析之QA/QC等,並於國內某一燃煤電廠進行測試並調查其汞排放及分布,此外亦針對US EPA Method 30B與汞CEMS之採樣數據進行比較並評估US EPA Method 30B作為汞CEMS的RATA參考方法之可行性,研究結果顯示US EPA Method 30B之採樣與分析方法及其QA/QC已完整建立,實廠之汞排放及流布調查部分,三季煙囪煙道氣之汞排放濃度為0.04 ~ 0.346 µg/Nm3之間,皆遠低於電力設施空氣污染物排放標準中新設汽力機組規範的2 µg/Nm3,符合國家排放標準之規定,此外US EPA Method 30B與汞CEMS之數據絕對值差不超過1.0 µg/scm,結果為可接受,驗證US EPA Method 30B作為汞CEMS的RATA之參考方法為可行的,本研究亦針對空氣污染防制設備之固體與液體樣品進行分析,固體樣品部分,三季之燃煤汞濃度範圍為0.031 ~ 0.057 mg/kg;底灰除了第Ⅲ季2號機為0.01 mg/kg外,其餘皆低於方法偵測極限(ND);飛灰之汞濃度介於0.075 ~ 0.712 mg/kg,相對富集因子則是飛灰遠高於底灰。液體樣品部分,各季之脫硫海水汞濃度範圍為0.057 ~ 1.190 µg/L,而第Ⅲ季之進流海水之汞濃度為0.029 µg/L,各季煙囪之排放係數為0.37 ~ 3.37 mg Hg/t coal並符合美國MATS燃煤電廠汞排放之規範,此外由於煙道氣中氯化氫(HCl)對汞氧化影響亦是重要關鍵,因此本研究亦針對商用SCR觸媒之汞氧化效率與HCl之影響進行實驗並探討,結果顯示於370℃且低汞濃度環境下(5.5 ~ 6.0 µg/Nm3)商用SCR觸媒之汞吸附現象仍然明顯,而加入20 ppm與30 ppm HCl則明顯提升汞之氧化效率(80% ~ 90%)。
摘要(英) In this study, a mercury sampling method based on US EPA Method 30B, including the sampling process, the operation of sampling equipment and the QA/QC of sampling and analysis is developed. A survey of mercury emissions and distribution in the flue gas of stacks a coal-fired power plant in Taiwan is conducted in three seasons. In addition, the results obtained by US EPA Method 30B were compared with that obtained with the Continuous Emissions Monitoring Systems (CEMS). The results show that the sampling and analysis method of US EPA Method 30B and its QA/QC have been fully established and the difference between US EPA Method 30B and mercury CEMS data does not exceed 1.0 µg/scm. Mercury concentrations emitted from a large-scale coal fired power plant ranged from 0.04 to 0.346 µg/Nm3, which are lower than the emission standards enacted by Taiwan EPA (2 µg/Nm3). To verify that US EPA Method 30B is feasible as a reference method for Relative Accuracy Test Audits (RATA) of mercury CEMS, this research also analyzes the solid and liquid samples discharged by air pollution control devices. For solid samples, the mercury concentrations of coals in three seasons range from 0.031 to 0.057 mg/kg; the bottom ashes are below the method detection limit (MDL) except for the boiler No. 2 in season Ⅲ (0.01 mg/kg). The mercury concentrations of fly ashes are between 0.075 ~ 0.712 mg/kg. The relative enrichment factor of fly ash is much higher than that of bottom ash. For liquid samples, the mercury concentrations of desulfurized seawater in each season range from 0.057 to 1.190 µg/L, and the mercury concentration of influent seawater in season Ⅲ is 0.029 µg/L. The emission factors of the stacks in each season range from 0.37 to 3.37 mg Hg/t coal, which meets the mercury emission standards for coal-fired power plants in the US MATS. Moreover, the influence of hydrogen chloride (HCl) in the flue gas on the oxidation of mercury is also an important key. Thus, this research also conducts experiments and discusses the mercury oxidation efficiency of commercial SCR catalysts and the influence of HCl. The results show that at low concentrations (5.5 to 6.0 µg/Nm3), mercury is strongly adsorbed on commercial SCR catalyst even at 370oC. The addition of HCl, especially at 20 ppm and 30 ppm, can effectively increase mercury oxidation efficiency (80% to 90%).
關鍵字(中) ★ 汞及其化合物
★ 燃煤電廠
★ US EPA Method 30B
★ 汞CEMS
★ 商用SCR 觸媒
關鍵字(英) ★ Mercury (Hg)
★ Coal-fired power plants
★ US EPA Method 30B
★ Hg-CEMS
★ SCR catalyst
論文目次 摘要 I
Abstract II
目錄 IV
表目錄 VII
圖目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及範疇 2
第二章 文獻回顧 3
2.1 汞之基本特性 3
2.2 汞之排放來源 6
2.3 煤炭燃燒過程中汞之轉化 10
2.4 汞對環境與人體之影響及危害 11
2.5 汞之檢測方法 12
2.6 燃煤程序之汞控制技術 15
2.7 國內外燃煤電廠之汞相關法規 19
2.8 觸媒之基本介紹 22
2.8.1 觸媒催化之原理與機制 22
2.8.2 觸媒之成分 24
2.8.3 觸媒之形式 24
第三章 研究方法 26
3.1 研究流程及架構 26
3.2 實廠採樣調查 28
3.2.1 採樣時間 28
3.2.2 空氣污染防制設備與採樣位置 28
3.2.3 樣品採樣程序 29
3.2.3.1 煙道氣中汞及其化合物之採樣程序 29
3.2.3.2 固體樣品之採樣程序 36
3.2.3.3 液體樣品之採樣程序 36
3.2.4 樣品分析 36
3.2.4.1 煙道氣樣品分析 37
3.2.4.2 固體樣品之分析 38
3.2.4.3 液體樣品之分析 38
3.2.5 汞CEMS數據之收集 39
3.3 商用SCR觸媒測試實驗 40
3.3.1 實驗設備 40
3.3.2 實驗藥品 42
3.3.3 實驗氣體 43
3.3.4 實驗設計方法 43
3.3.4.1 觸媒材料 43
3.3.4.2 觸媒材料之物化特性分析 44
3.3.4.3 實驗系統設置 46
3.4 公式計算 48
第四章 結果與討論 51
4.1 US EPA Method 30B之建立與驗證 51
4.1.1 採樣前之場址現勘 52
4.1.2 燃煤電廠之預採樣 54
4.1.3 現場採樣紀錄表與採樣分析QA/QC準則表 55
4.2 燃煤電廠四季之調查結果 59
4.2.1 燃煤電廠之背景資料 59
4.2.2 煙道氣採樣結果 61
4.2.3 固體樣品採樣結果 64
4.2.4 液體樣品採樣結果 70
4.2.5 燃煤電廠中汞輸出/輸入量 72
4.2.6 燃煤電廠之汞質量平衡 74
4.2.7 燃煤電廠之汞排放係數 78
4.3 商用SCR觸媒轉化元素汞之效率探討 79
4.3.1 商用SCR觸媒之特性分析 79
4.3.1.1 BET (Brunauer–Emmett–Teller)比表面積分析結果 79
4.3.2 元素汞氧化效率與氯化氫影響之探討 81
第五章 結論與建議 84
5.1 結論 84
5.2 建議 85
參考文獻 86
附錄一 汞採樣紀錄表 94
附錄二 預採樣之QA/QC 95
附錄三 第Ⅰ季之QA/QC 97
附錄四 第Ⅱ季之QA/QC 99
附錄五 第Ⅲ季之QA/QC 101
附錄六 各季當日之採樣操作參數 103
參考文獻 Agarwalla, H., Senapati, R. N. & Das, T. B. (2021) Mercury emissions and partitioning from Indian coal-fired power plants. Journal of Environmental Sciences 100, 28-33.
ASTM (2016) Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method). World Trade Organization Technical Barriers to Trade (TBT) Committee.
Belkin, H. E., Tewalt, S. J., Finkelman, R. B. & Wang, B. (2006) Mercury in coal from the People′s Republic of China. Acta Geochimica, 25, 52.
Belkin, H. E., Tewalt, S. J., Hower, J. C., Stucker, J. & O′Keefe, J. (2009) Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. International Journal of Coal Geology, 77 (3-4), 260-268.
Burmistrz, P., Kogut, K., Marczak, M. & Zwoździak, J. (2016) Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Processing Technology, 152, 250-258.
Chen, C., Jia, W., Liu, S. & Cao, Y. (2018) The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for HgO oxidation in simulated flue gas. Applied Surface Science, 436, 1022-1029.
Chou, C. P., Chiu, C. H., Chang, T. C. & Hsi, H. C. (2021) Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Journal of the Air & Waste Management Association, 71 (5), 553-563.
Christensen, C. L., Skårup, S. & Maag, J. (2001) Mass flow analyses of mercury. Danish Environmental Protection Agency.
Compeau, G. & Bartha, R. (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50 (2), 498-502.
Cui, J., Duan, L., Jiang, Y., Zhao, C. & Anthony, E. J. (2018) Migration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel, 215, 638-646.
Finkelman, R. B. (1993) Trace and minor elements in coal. Organic Geochemistry. Springer.
Fleming, E. J., Mack, E. E., Green, P. G. & Nelson, D. C. (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72 (1), 457-464.
Galbreath, K. C. & Zygarlicke, C. J. (2000) Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65, 289-310.
Gao, L., Wang, Y., Huang, Q. & Guo, S. (2017) Emission of mercury from six low calorific value coal-fired power plants. Fuel, 210, 611-616.
Gao, W., Liu, Q., Wu, C., Li, H., Li, Y., Yang, J. & Wu, G. (2013) Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst. Chemical Engineering Journal, 220, 53-60.
Hsi, H. C., Lee, H. H., Hwang, J. F. & Chen, W. (2010) Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals. Journal of the Air & Waste Management Association, 60 (5), 514-522.
Kong, M., Liu, Q., Wang, X., Ren, S., Yang, J., Zhao, D., Xi, W. & Yao, L. (2015) Performance impact and poisoning mechanism of arsenic over commercial V2O5–WO3/TiO2 SCR catalyst. Catalysis Communications, 72, 121-126.
Laudal, D. L. (2009) Conducting a RATA of continuous mercury monitors using EPA Method 30B. Fuel Processing Technology, 90 (11), 1343-1347.
Li, C., Duan, Y., Tang, H., Zhu, C., Li, Y., Zheng, Y. & Liu, M. (2018a) Study on the Hg emission and migration characteristics in coal-fired power plant of China with an ammonia desulfurization process. Fuel, 211, 621-628.
Li, C., Duan, Y., Tang, H., Zhu, C., Zheng, Y. & Huang, T. (2018b) Mercury emissions monitoring in a coal-fired power plant by using the EPA method 30B based on a calcium-based sorbent trap. Fuel, 221, 171-178.
Li, H., Wu, C. Y., Li, Y. & Zhang, J. (2011) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology, 45 (17), 7394-7400.
Li, X., Li, Z., Fu, C., Tang, L., Chen, J., Wu, T., Lin, C., Feng, X. & Fu, X. (2019a) Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 251, 651-659.
Li, X., Li, Z., Wu, T., Chen, J., Fu, C., Zhang, L., Feng, X., Fu, X., Tang, L., Wang, Z. & Wang, Z. (2019b) Atmospheric mercury emissions from two pre-calciner cement plants in Southwest China. Atmospheric Environment, 199, 177-188.
Li, Y., Murphy, P. & Wu, C. (2008) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Processing Technology, 89 (6), 567-573.
Li, Z., Chen, X., Liu, W., Li, T., Chen, J., Lin, C., Sun, G. & Feng, X. (2019c) Evolution of four-decade atmospheric mercury release from a coal-fired power plant in North China. Atmospheric Environment, 213, 526-533.
Liu, S., Chen, J., Cao, Y., Yang, H., Chen, C. & Jia, W. (2019) Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China. Journal of the Air & Waste Management Association, 69 (2), 234-245.
Lusilao-Makiese, J., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L. & Cukrowska, E. M. (2012) Speciation of mercury in South African coals. Toxicological & Environmental Chemistry, 94 (9), 1688-1706.
Lutter, R. & Irwin, E. (2002) Mercury in the environment: A volatile problem. Environment: Science and Policy for Sustainable Development, 44 (9), 24-40.
Mukherjee, A. B., Zevenhoven, R., Bhattacharya, P., Sajwan, K. S. & Kikuchi, R. (2008) Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation & Recycling, 52 (4), 571-591.
O′Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G. & Rinklebe, J. (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747-761.
Pritchard, S. & DiFrancesco, C. (2006) SCR catalyst management: Enhancing operational flexibility. Cormetech, Inc., Tech. Rep.
Schroeder, W. H. & Munthe, J. (1998) Atmospheric mercury—an overview. Atmospheric Environment, 32 (5), 809-822.
Su, S., Liu, L., Wang, L., Syed-Hassan, S. S. A., Kong, F., Hu, S., Wang, Y., Jiang, L., Xu, K., Zhang, A. & Xiang, J. (2017) Mass flow analysis of mercury transformation and effect of seawater flue gas desulfurization on mercury removal in a full-scale coal-fired power plant. Energy & Fuels, 31 (10), 11109-11116.
Swaine, D. J. & Goodarzi, F. (1995) Environmental aspects of trace elements in coal. Springer Science & Business Media.
Sznopek, J. L. & Goonan, T. G. (2000) The materials flow of mercury in the economies of the United States and the world. US Department of the Interior, US Geological Survey.
Tang, N. & Pan, S. (2013) Study on mercury emission and migration from large-scale pulverized coal fired boilers. Journal of Fuel Chemistry and Technology, 41 (4), 484-490.
Tang, S., Wang, L., Feng, X., Feng, Z., Li, R., Fan, H. & Li, K. (2016) Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, Northern China. Fuel, 180, 194-204.
Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., Sprovieri, F. & Ancora, M. (2010) Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 10 (3), 1183-1192.
Wang, X., Lian, W., Fu, X., Basset, J. & Lefebvre, F. (2006) Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface. Journal of Catalysis, 238 (1), 13-20.
Wierzchowski, K., Chećko, J. & Pyka, I. (2017) Variability of mercury content in coal matter from coal seams of the upper silesia coal basin. Archives of Mining Sciences, 62 (4).
Yang, A., Yan, Z., Hui, R., Shen, Z. & Zhuang, K. (2015) The abundance, distribution, and modes of occurrence of Hg in Chinese coals. Science Technology and Engineering, 15 (32), 1671-1815.
Yang, J., Zhang, M., Li, H., Qu, W., Zhao, Y. & Zhang, J. (2018) Simultaneous NO reduction and HgO oxidation over La0.8Ce0.2MnO3 perovskite catalysts at low temperature. Industrial & Engineering Chemistry Research, 57 (29), 9374-9385.
Yang, J., Zhu, W., Zhang, S., Zhang, M., Qu, W., Li, H., Zeng, Z., Zhao, Y. & Zhang, J. (2019) Role of flue gas components in HgO oxidation over La0.8Ce0.2MnO3 perovskite catalyst in coal combustion flue gas. Chemical Engineering Journal, 360, 1656-1666.
Yudovich, Y. E. & Ketris, M. (2005) Mercury in coal: A review: Part 1. Geochemistry. International Journal of Coal Geology, 62 (3), 107-134.
Zhang, J., Ren, D., Xu, D. & Zhao, F. (1999) Mercury in coal and its effect on environment. Advances in Environmental Science, 7 (3), 100-104.
Zhang, Y., Yang, J., Yu, X., Sun, P., Zhao, Y., Zhang, J., Chen, G., Yao, H. & Zheng, C. (2017) Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Processing Technology, 158, 272-280.
Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M. & Lu, J. (2019) A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science, 73, 26-64.
Zheng, L., Liu, G. & Chou, C. L. (2007a) The distribution, occurrence and environmental effect of mercury in Chinese coals. Science of the Total Environment, 384 (1-3), 374-383.
Zheng, L., Liu, G., Qi, C., Chen, Y. & Zhang, Y. (2007b) Study on environmental geochemistry of mercury in Chinese coals. Journal of University of Science and Technology of China, 37 (8), 953-963.
Zhou, Z., Liu, X., Zhao, B., Chen, Z., Shao, H., Wang, L. & Xu, M. (2015) Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants. Fuel Processing Technology, 131, 99-108.
Zhou, Z., Liu, X., Zhao, B., Shao, H., Xu, Y. & Xu, M. (2016) Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature. Chemical Engineering Journal, 288, 701-710.
UNEP, (2019) "Global Mercury Assessment 2018. "
US EPA, (2017) " Method 30B-Determination of total vapor phase mercury emissions from coal-fired combustion sources using carbon sorbent traps. "
US EPA, (2012) "National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-CommercialInstitutional, and Small Industrial-Commercial-Institutional Steam Generating Units; Final Rule. "
US EPA, (2013) " National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-CommercialInstitutional, and Small Industrial-Commercial-Institutional Steam Generating Units; Rules and Regulations. "
林辰峯,2013,「以水熱法/含浸法合成之V2O5/MCM-41觸媒轉化氣流中戴奧辛、NO及汞之研究」,國立中央大學環工所,碩士論文。
徐瑋廷,2015,「以釩鈦SCR觸媒轉換元素汞及去除NO與Dioxin之效率探討」,國立中央大學環工所,碩士論文。
吳榮宗,1989,工業觸媒概論,國興出版社。
羅錦泉,2016,「職業性汞中毒認定參考指引」,勞動部職業安全衛生署。
行政院環保署環檢所,排放管道中重金屬檢測方法(NIEA A302.71C)。
行政院環保署環檢所,排放管道中汞檢測方法(NIEA A303.70C)。
行政院環保署環檢所,排放管道中總氣狀汞檢測方法-自動監測法(NIEA A310.70C)。
電事業為台灣電力股份有限公司,台灣電力公司永續報告書2020。
行政院經濟部工業局,經濟部事業廢棄物再利用管理辦法。
行政院環保署水質保護處,放流水標準。
行政院環保署,電力設施空氣污染物排放標準。
指導教授 張木彬(Moo-Been Chang) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明