參考文獻 |
Agarwalla, H., Senapati, R. N. & Das, T. B. (2021) Mercury emissions and partitioning from Indian coal-fired power plants. Journal of Environmental Sciences 100, 28-33.
ASTM (2016) Standard Test Method for Elemental, Oxidized, Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method). World Trade Organization Technical Barriers to Trade (TBT) Committee.
Belkin, H. E., Tewalt, S. J., Finkelman, R. B. & Wang, B. (2006) Mercury in coal from the People′s Republic of China. Acta Geochimica, 25, 52.
Belkin, H. E., Tewalt, S. J., Hower, J. C., Stucker, J. & O′Keefe, J. (2009) Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. International Journal of Coal Geology, 77 (3-4), 260-268.
Burmistrz, P., Kogut, K., Marczak, M. & Zwoździak, J. (2016) Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Processing Technology, 152, 250-258.
Chen, C., Jia, W., Liu, S. & Cao, Y. (2018) The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for HgO oxidation in simulated flue gas. Applied Surface Science, 436, 1022-1029.
Chou, C. P., Chiu, C. H., Chang, T. C. & Hsi, H. C. (2021) Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Journal of the Air & Waste Management Association, 71 (5), 553-563.
Christensen, C. L., Skårup, S. & Maag, J. (2001) Mass flow analyses of mercury. Danish Environmental Protection Agency.
Compeau, G. & Bartha, R. (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50 (2), 498-502.
Cui, J., Duan, L., Jiang, Y., Zhao, C. & Anthony, E. J. (2018) Migration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel, 215, 638-646.
Finkelman, R. B. (1993) Trace and minor elements in coal. Organic Geochemistry. Springer.
Fleming, E. J., Mack, E. E., Green, P. G. & Nelson, D. C. (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72 (1), 457-464.
Galbreath, K. C. & Zygarlicke, C. J. (2000) Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65, 289-310.
Gao, L., Wang, Y., Huang, Q. & Guo, S. (2017) Emission of mercury from six low calorific value coal-fired power plants. Fuel, 210, 611-616.
Gao, W., Liu, Q., Wu, C., Li, H., Li, Y., Yang, J. & Wu, G. (2013) Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst. Chemical Engineering Journal, 220, 53-60.
Hsi, H. C., Lee, H. H., Hwang, J. F. & Chen, W. (2010) Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals. Journal of the Air & Waste Management Association, 60 (5), 514-522.
Kong, M., Liu, Q., Wang, X., Ren, S., Yang, J., Zhao, D., Xi, W. & Yao, L. (2015) Performance impact and poisoning mechanism of arsenic over commercial V2O5–WO3/TiO2 SCR catalyst. Catalysis Communications, 72, 121-126.
Laudal, D. L. (2009) Conducting a RATA of continuous mercury monitors using EPA Method 30B. Fuel Processing Technology, 90 (11), 1343-1347.
Li, C., Duan, Y., Tang, H., Zhu, C., Li, Y., Zheng, Y. & Liu, M. (2018a) Study on the Hg emission and migration characteristics in coal-fired power plant of China with an ammonia desulfurization process. Fuel, 211, 621-628.
Li, C., Duan, Y., Tang, H., Zhu, C., Zheng, Y. & Huang, T. (2018b) Mercury emissions monitoring in a coal-fired power plant by using the EPA method 30B based on a calcium-based sorbent trap. Fuel, 221, 171-178.
Li, H., Wu, C. Y., Li, Y. & Zhang, J. (2011) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology, 45 (17), 7394-7400.
Li, X., Li, Z., Fu, C., Tang, L., Chen, J., Wu, T., Lin, C., Feng, X. & Fu, X. (2019a) Fate of mercury in two CFB utility boilers with different fueled coals and air pollution control devices. Fuel, 251, 651-659.
Li, X., Li, Z., Wu, T., Chen, J., Fu, C., Zhang, L., Feng, X., Fu, X., Tang, L., Wang, Z. & Wang, Z. (2019b) Atmospheric mercury emissions from two pre-calciner cement plants in Southwest China. Atmospheric Environment, 199, 177-188.
Li, Y., Murphy, P. & Wu, C. (2008) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Processing Technology, 89 (6), 567-573.
Li, Z., Chen, X., Liu, W., Li, T., Chen, J., Lin, C., Sun, G. & Feng, X. (2019c) Evolution of four-decade atmospheric mercury release from a coal-fired power plant in North China. Atmospheric Environment, 213, 526-533.
Liu, S., Chen, J., Cao, Y., Yang, H., Chen, C. & Jia, W. (2019) Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China. Journal of the Air & Waste Management Association, 69 (2), 234-245.
Lusilao-Makiese, J., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L. & Cukrowska, E. M. (2012) Speciation of mercury in South African coals. Toxicological & Environmental Chemistry, 94 (9), 1688-1706.
Lutter, R. & Irwin, E. (2002) Mercury in the environment: A volatile problem. Environment: Science and Policy for Sustainable Development, 44 (9), 24-40.
Mukherjee, A. B., Zevenhoven, R., Bhattacharya, P., Sajwan, K. S. & Kikuchi, R. (2008) Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation & Recycling, 52 (4), 571-591.
O′Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G. & Rinklebe, J. (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747-761.
Pritchard, S. & DiFrancesco, C. (2006) SCR catalyst management: Enhancing operational flexibility. Cormetech, Inc., Tech. Rep.
Schroeder, W. H. & Munthe, J. (1998) Atmospheric mercury—an overview. Atmospheric Environment, 32 (5), 809-822.
Su, S., Liu, L., Wang, L., Syed-Hassan, S. S. A., Kong, F., Hu, S., Wang, Y., Jiang, L., Xu, K., Zhang, A. & Xiang, J. (2017) Mass flow analysis of mercury transformation and effect of seawater flue gas desulfurization on mercury removal in a full-scale coal-fired power plant. Energy & Fuels, 31 (10), 11109-11116.
Swaine, D. J. & Goodarzi, F. (1995) Environmental aspects of trace elements in coal. Springer Science & Business Media.
Sznopek, J. L. & Goonan, T. G. (2000) The materials flow of mercury in the economies of the United States and the world. US Department of the Interior, US Geological Survey.
Tang, N. & Pan, S. (2013) Study on mercury emission and migration from large-scale pulverized coal fired boilers. Journal of Fuel Chemistry and Technology, 41 (4), 484-490.
Tang, S., Wang, L., Feng, X., Feng, Z., Li, R., Fan, H. & Li, K. (2016) Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, Northern China. Fuel, 180, 194-204.
Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., Sprovieri, F. & Ancora, M. (2010) Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 10 (3), 1183-1192.
Wang, X., Lian, W., Fu, X., Basset, J. & Lefebvre, F. (2006) Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface. Journal of Catalysis, 238 (1), 13-20.
Wierzchowski, K., Chećko, J. & Pyka, I. (2017) Variability of mercury content in coal matter from coal seams of the upper silesia coal basin. Archives of Mining Sciences, 62 (4).
Yang, A., Yan, Z., Hui, R., Shen, Z. & Zhuang, K. (2015) The abundance, distribution, and modes of occurrence of Hg in Chinese coals. Science Technology and Engineering, 15 (32), 1671-1815.
Yang, J., Zhang, M., Li, H., Qu, W., Zhao, Y. & Zhang, J. (2018) Simultaneous NO reduction and HgO oxidation over La0.8Ce0.2MnO3 perovskite catalysts at low temperature. Industrial & Engineering Chemistry Research, 57 (29), 9374-9385.
Yang, J., Zhu, W., Zhang, S., Zhang, M., Qu, W., Li, H., Zeng, Z., Zhao, Y. & Zhang, J. (2019) Role of flue gas components in HgO oxidation over La0.8Ce0.2MnO3 perovskite catalyst in coal combustion flue gas. Chemical Engineering Journal, 360, 1656-1666.
Yudovich, Y. E. & Ketris, M. (2005) Mercury in coal: A review: Part 1. Geochemistry. International Journal of Coal Geology, 62 (3), 107-134.
Zhang, J., Ren, D., Xu, D. & Zhao, F. (1999) Mercury in coal and its effect on environment. Advances in Environmental Science, 7 (3), 100-104.
Zhang, Y., Yang, J., Yu, X., Sun, P., Zhao, Y., Zhang, J., Chen, G., Yao, H. & Zheng, C. (2017) Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Processing Technology, 158, 272-280.
Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M. & Lu, J. (2019) A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science, 73, 26-64.
Zheng, L., Liu, G. & Chou, C. L. (2007a) The distribution, occurrence and environmental effect of mercury in Chinese coals. Science of the Total Environment, 384 (1-3), 374-383.
Zheng, L., Liu, G., Qi, C., Chen, Y. & Zhang, Y. (2007b) Study on environmental geochemistry of mercury in Chinese coals. Journal of University of Science and Technology of China, 37 (8), 953-963.
Zhou, Z., Liu, X., Zhao, B., Chen, Z., Shao, H., Wang, L. & Xu, M. (2015) Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants. Fuel Processing Technology, 131, 99-108.
Zhou, Z., Liu, X., Zhao, B., Shao, H., Xu, Y. & Xu, M. (2016) Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature. Chemical Engineering Journal, 288, 701-710.
UNEP, (2019) "Global Mercury Assessment 2018. "
US EPA, (2017) " Method 30B-Determination of total vapor phase mercury emissions from coal-fired combustion sources using carbon sorbent traps. "
US EPA, (2012) "National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-CommercialInstitutional, and Small Industrial-Commercial-Institutional Steam Generating Units; Final Rule. "
US EPA, (2013) " National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-CommercialInstitutional, and Small Industrial-Commercial-Institutional Steam Generating Units; Rules and Regulations. "
林辰峯,2013,「以水熱法/含浸法合成之V2O5/MCM-41觸媒轉化氣流中戴奧辛、NO及汞之研究」,國立中央大學環工所,碩士論文。
徐瑋廷,2015,「以釩鈦SCR觸媒轉換元素汞及去除NO與Dioxin之效率探討」,國立中央大學環工所,碩士論文。
吳榮宗,1989,工業觸媒概論,國興出版社。
羅錦泉,2016,「職業性汞中毒認定參考指引」,勞動部職業安全衛生署。
行政院環保署環檢所,排放管道中重金屬檢測方法(NIEA A302.71C)。
行政院環保署環檢所,排放管道中汞檢測方法(NIEA A303.70C)。
行政院環保署環檢所,排放管道中總氣狀汞檢測方法-自動監測法(NIEA A310.70C)。
電事業為台灣電力股份有限公司,台灣電力公司永續報告書2020。
行政院經濟部工業局,經濟部事業廢棄物再利用管理辦法。
行政院環保署水質保護處,放流水標準。
行政院環保署,電力設施空氣污染物排放標準。 |