博碩士論文 108326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.191.169
姓名 李汪叡(李汪叡)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 運用單壁奈米碳管/釕金屬奈米粒子修飾玻璃碳電極進行水中阿莫西林之循環伏安法分析
(Determination of Amoxicillin by cyclic voltammetry using single-walled carbon nanotubes/RuNPs modified glassy carbon electrode)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-5-16以後開放)
摘要(中) 阿莫西林為目前最常見的口服抗生素之一,幾乎有80%的阿莫西林以原始型態在人體尿液中被檢測出來,這表示說阿莫西林可能以很高濃度進入至環境水體中。高濃度的阿莫西林可能有極大機率會使細菌演化出具有耐藥性的個體,甚至有極大的機率會是細菌發展成超級細菌。因此對環境中阿莫西林的監測極為重要。目前阿莫西林的分析方法樣品在分析前要先進行前置處理、非常耗時、且分析時需要投入非常可觀的有機溶劑、且無法即時監測。而電化學方法有著低成本、環境友好、優秀的靈敏度之長處外,電化學方法最具有優勢的一點是它可直接於現場完成監測與分析。
本研究開發釕奈米粒子/單壁奈米管修飾玻璃碳電極進行循環伏安法分析水中的阿莫西林。首先會對修飾材料進行伏安分析測試,接下來對釕金屬的電沉積參數進行最佳化,之後再探討阿莫西林的最佳伏安分析參數。最後,探討電極在環境水樣中對阿莫西林的偵測表現,並對電極的再現性、重複性進行分析,分析結果顯示了釕奈米粒子/單壁奈米管修飾玻璃碳電極(Ru/SWCNT/GCE)以循環掃描伏安法分析水中阿莫西林在兩個濃度範圍中(1 μM-10 μM) 和 (30 μM-300 μM)中皆表現出優異的現性關係,且偵測極限(LOD)為0.423 μM。另外,電極有著優秀的再現性,再現性的相對標準偏差為1.23%。最後在真實水樣對阿莫西林進行分析,證實了電極在生活污水、污水廠出流水中皆有著非常優秀的回收率。
摘要(英) Antibiotic amoxicillin is one of the most common oral antibiotics, and almost 80% of original amoxicillin is detected in human urine, which means that amoxicillin may be released into the environment with high concentrations. And the high concentrations of amoxicillin in the environment may cause the bacteria to develop drug resistance or even have great chance to evolve into super bacteria. Therefore, the monitoring of amoxicillin in the environment need followed. At present, the method of analyzing amoxicillin is time-consuming, requires sample pretreatment and, large amount of organic solvent during analysis, and cannot be monitored in-site. The electrochemical method has the advantages of low cost, environmental friendliness, and excellent sensitivity. More importantly, electrochemical method can be applied on-site analysis and monitoring.
In this research, cyclic voltammetry analysis of amoxicillin was performed by ruthenium nanoparticles/single walled carbon nanotubes modified glassy carbon electrode (Ru/SWCNT/GCE). First, the material selection and analysis test were carried out, and then the parameters of ruthenium nanoparticle electrodeposition and voltammetry analysis were optimized. The detection performance of the electrode for amoxicillin in water would be determined and the stability and reproducibility of the electrode were also evaluated. Analyzed results indicated that Ru/SWCNT/GCE detected amoxicillin in water using cyclic voltammetry had good linear relationships in two concentration ranges (1 μM-10 μM) and (30 μM-300 μM), and the limit of detection (LOD) is 0.423 μM. At last, the analysis of amoxicillin in environmental water samples verified that modified electrode had good recovery rate in both domestic sewage and wastewater plant effluent.
關鍵字(中) ★ 阿莫西林
★ 單壁奈米碳管
★ 循環伏安法
★ 釕金屬奈米粒子
關鍵字(英) ★ Amoxicilin
★ SWCNT
★ Cyclic voltammetry
★ RuNPs
論文目次 摘要 i
Abstract iii
誌謝 v
Contents vii
List of Figures xi
List of Tables xv
Chapter 1 1
Introduction 1
1.1. Background 1
1.2. Objectives 4
Chapter 2 7
Literature Reviews 7
2.1. Types and detection methods of Amoxicillin 7
2.1.1. Amoxicillin 7
2.1.2. Types of amoxicillin in water 8
2.1.3. Detection method of amoxicillin 10
2.2. Electrochemical technology 10
2.2.1. Electrochemical reaction and principle of voltammetry 11
2.2.2. Cyclic voltammetry (CV) 15
2.2.3. Electrochemical active surface area (ECSA) 19
2.2.4. Electrochemical impedance spectroscopy (EIS) 20
2.3. Electrode modified materials for amoxicillin analysis 24
2.3.1. Carbon nanotubes (CNTs) 24
2.3.2. Ruthenium nanoparticles (RuNPs) 29
Chapter 3 31
Methods and Materials 31
3.1. Materials and chemicals 31
3.2. Instrumentation 32
3.2.1. Electrochemical analyzer 32
3.3. Modification of working electrode (Ru/SWCNT/GCE) 33
3.3.1. Pretreatment of SWCNT 33
3.3.2. Preparation of Ru/SWCNT/GCE 34
3.4. Characterization of modified electrodes 35
3.4.1. TEM & EDS 35
3.4.2. XRD 36
3.4.3. FTIR 36
3.5. Electrochemical performance analysis 37
3.5.1. Optimization of Ru electroplating parameters 37
3.5.2. Electrochemical characterization of modified electrode 38
3.5.3. Optimization of amoxicillin analysis 38
3.5.4. Interference analysis 39
3.5.5. Real water samples analysis 39
Chapter 4 40
Results and Discussions 40
4.1. Selection of modified electrode 40
4.2. Optimization of Ru electroplating parameters 44
4.2.1. Plating voltage 44
4.2.2. Concentration of Ruthenium(III) chloride trihydrate 46
4.2.3. Plating time 48
4.3. Characterization of modified electrode 50
4.3.1. Electrochemical active surface area (ECSA) 50
4.3.2. Reaction kinetics of modified electrode 55
4.3.3. Electrochemical impedance spectroscopy (EIS) 59
4.3.4. TEM & EDS & XRD & FTIR analysis 62
4.4. Analysis of Amoxicillin 70
4.4.1. Influence of scan rate for the amoxicillin determination 70
4.4.2. Influence of pH for determination of amoxicillin 74
4.4.3. Effect of accumulation time for determination of amoxicillin 77
4.4.4. Analytical performance of Ru/SWCNT/GCE 79
4.5. Reproductibility &Repeatability of modified electrodes 83
4.5.1. Reproducibility of Ru/SWCNT/GCE 83
4.5.2. Repeatability 84
4.6. Interference measurement & Analysis of environmental waters 85
4.6.1. Interferences of other organic compounds 85
4.6.2. Analysis of environmental waters 88
Chapter 5 91
Conclusions and Suggestions 91
5.1. Conclusion 91
5.2. Suggestions 92
Reference 93
參考文獻 Abdelwahab, A.A., Naggar, A.H., Abdelmotaleb, M., and Emran, M.Y.,"Ruthenium Nanoparticles Uniformly‐designed Chemically Treated Graphene Oxide Nanosheets for Simultaneous Voltammetric Determination of Dopamine and Acetaminophen", Electroanalysis, 32, 2156-2165(2020).
Ajayan, P., Ebbesen, T., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H.,"Opening carbon nanotubes with oxygen and implications for filling", Nature, 362, 522-525(1993).
Ang, C.Y., Luo, W., Hansen Jr, E.B., Freemana, J.P., and Thompson Jr, H.C.,"Determination of amoxicillin in catfish and salmon tissues by liquid chromatography with precolumn formaldehyde derivatization", Journal of AOAC International, 79, 389-396(1996).
Arora, N., and Sharma, N.,"Arc discharge synthesis of carbon nanotubes: Comprehensive review", Diamond and related materials, 50, 135-150(2014).
Bard, A.J., and Faulkner, L.R.,"Fundamentals and applications", Electrochemical methods, 2, 580-632(2001).
Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G.,"Electrochemical methods: fundamentals and applications", 2, (1980).
Baytak, A.K., and Aslanoglu, M.,"Sensitive determination of capsaicin in pepper samples using a voltammetric platform based on carbon nanotubes and ruthenium nanoparticles", Food chemistry, 228, 152-157(2017).
Bird, A.E.,"Amoxicillin", Analytical profiles of drug substances and excipients, 23, 1-52(1994).
Botte, G.G.,"Electrochemical manufacturing in the chemical industry", The Electrochemical Society Interface, 23, 49(2014).
Brahman, P.K., Dar, R.A., and Pitre, K.S.,"Conducting polymer film based electrochemical sensor for the determination of amoxicillin in micellar media", Sensors and Actuators B: Chemical, 176, 307-314(2013).
Cai, D., Song, M., and Xu, C.,"Highly conductive carbon‐nanotube/graphite‐oxide hybrid films", Advanced Materials, 20, 1706-1709(2008).
Cao, A., Xu, C., Liang, J., Wu, D., and Wei, B.,"X-ray diffraction characterization on the alignment degree of carbon nanotubes", Chemical physics letters, 344, 13-17(2001).
Chatraei, F., and Zare, H.R.,"A comparative study of the electrochemical characteristics and simultaneous determination of dopamine, acetaminophen, and aspirin at a ruthenium oxide nanoparticles modified glassy carbon electrode versus a bare one", Analytical Methods, 4, 2940-2947(2012).
Chen, C., Lv, X., Lei, W., Wu, Y., Feng, S., Ding, Y., Lv, J., Hao, Q., and Chen, S.-M.,"Amoxicillin on polyglutamic acid composite three-dimensional graphene modified electrode: reaction mechanism of amoxicillin insights by computational simulations", Analytica chimica acta, 1073, 22-29(2019).
Chiu, M.H., Chang, J.L., and Zen, J.M.,"An Analyte Derivatization Approach for Improved Electrochemical Detection of Amoxicillin", Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21, 1562-1567(2009).
Dattwyler, R., Volkman, D., Conaty, S., Platkin, S., and Luft, B.,"Amoxycillin plus probenecid versus doxycycline for treatment of erythema migrans borreliosis", The Lancet, 336, 1404-1406(1990).
Davies, J., and Davies, D.,"Origins and evolution of antibiotic resistance", Microbiology and molecular biology reviews, 74, 417-433(2010).
De Baere, S., and De Backer, P.,"Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection", Analytica chimica acta, 586, 319-325(2007).
de Marco, B.A., Natori, J.S.H., Fanelli, S., Tótoli, E.G., and Salgado, H.R.N.,"Characteristics, properties and analytical methods of amoxicillin: a review with green approach", Critical reviews in analytical chemistry, 47, 267-277(2017).
Deroco, P.B., Rocha-Filho, R.C., and Fatibello-Filho, O.,"A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor", Talanta, 179, 115-123(2018).
Douša, M., and Hosmanová, R.,"Rapid determination of amoxicillin in premixes by HPLC", Journal of pharmaceutical and biomedical analysis, 37, 373-377(2005).
Drogui, P., Blais, J.-F., and Mercier, G.,"Review of electrochemical technologies for environmental applications", Recent patents on engineering, 1, 257-272(2007).
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L.,"A practical beginner’s guide to cyclic voltammetry", Journal of chemical education, 95, 197-206(2018).
Elizalde-Velázquez, A., Gómez-Oliván, L.M., Galar-Martínez, M., Islas-Flores, H., Dublán-García, O., and SanJuan-Reyes, N.,"Amoxicillin in the aquatic environment, its fate and environmental risk", Environmental Health Risk-Hazardous Factors to Living Species, 1, 247-267(2016).
Ensafi, A.A., Allafchian, A.R., and Rezaei, B.,"Multiwall carbon nanotubes decorated with FeCr 2 O 4, a new selective electrochemical sensor for amoxicillin determination", Journal of Nanoparticle Research, 14, 1-11(2012).
Ferreira, M., Kuzniarska-Biernacka, I., Fonseca, A., Neves, I.C., Soares, O., Pereira, M.F., Figueiredo, J., and Parpot, P.,"Study of the Electroreactivity of Amoxicillin on Carbon Nanotube-Supported Metal Electrodes", (2018).
Fouladgar, M., Hadjmohammadi, M.R., Khalilzadeh, M.A., Biparva, P., Teymoori, N., and Beitollah, H.,"Voltammetric determination of amoxicillin at the electrochemical sensor ferrocenedicarboxylic acid multi wall carbon nanotubes paste electrode", Int. J. Electrochem. Sci, 6, 1355-1366(2011).
Gülfen, M., Canbaz, Y., and Özdemir, A.,"Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–Vis detector", Journal of Analysis and Testing, 4, 45-53(2020).
García-Reiriz, A., Damiani, P.C., and Olivieri, A.C.,"Different strategies for the direct determination of amoxicillin in human urine by second-order multivariate analysis of kinetic–spectrophotometric data", Talanta, 71, 806-815(2007).
Girault, H.,"Voltammetric method and apparatus", (1997).
Gothwal, R., and Shashidhar, T.,"Antibiotic pollution in the environment: a review", Clean–Soil, Air, Water, 43, 479-489(2015).
Goyal, R.N.,"Estimation of amoxicillin in presence of high concentration of uric acid and other urinary metabolites using an unmodified pyrolytic graphite sensor", Journal of The Electrochemical Society, 162, G8(2014).
Gozlan, I., Rotstein, A., and Avisar, D.,"Amoxicillin-degradation products formed under controlled environmental conditions: identification and determination in the aquatic environment", Chemosphere, 91, 985-992(2013).
Griffith, W.P.,"Ruthenium Oxidation Complexes: Their Uses as Homogenous Organic Catalysts", 34, (2010).
Hanrahan, G., Patil, D.G., and Wang, J.,"Electrochemical sensors for environmental monitoring: design, development and applications", Journal of Environmental Monitoring, 6, 657-664(2004).
Harris, P.J.,"Carbon nanotube composites", International materials reviews, 49, 31-43(2004).
Harvey, D.,"Analytical Chemistry 2.0 :Voltammetric_Methods, (2019).
Hernandez, M., Borrull, F., and Calull, M.,"Determination of amoxicillin in plasma samples by capillary electrophoresis", Journal of Chromatography B: Biomedical Sciences and Applications, 731, 309-315(1999).
Hirte, K., Seiwert, B., Schüürmann, G., and Reemtsma, T.,"New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater", Water research, 88, 880-888(2016).
Hrioua, A., Aghris, S., Ajermoun, N., Ettadili, F., Farahi, A., Lahrich, S., Bakasse, M., Saqrane, S., and El Mhammedi, M.,"Electrochemical Investigation of Amoxicillin Interaction with Some Metal Ions Related to Complexation Process", Journal of The Electrochemical Society, 167, 126501(2020).
Huang, H., Chen, T., Liu, X., and Ma, H.,"Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials", Analytica chimica acta, 852, 45-54(2014).
Iijima, S.,"Helical microtubules of graphitic carbon", nature, 354, 56-58(1991).
Kümmerer, K.,"Significance of antibiotics in the environment", Journal of Antimicrobial Chemotherapy, 52, 5-7(2003).
Kaur, S.P., Rao, R., and Nanda, S.,"Amoxicillin: a broad spectrum antibiotic", Int J Pharm Pharm Sci, 3, 30-37(2011).
Kissinger, P.T., and Heineman, W.R.,"Cyclic voltammetry", Journal of Chemical Education, 60, 702(1983).
Kumar, N., and Goyal, R.N.,"Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin", Sensors and Actuators B: Chemical, 243, 658-668(2017).
Kutyła, D., Kołczyk, K., Żabiński, P., Kowalik, R., Kwiecińska, A., and Skibinska, K.,"Investigation of Ruthenium Thin Layers Electrodeposition Process under Galvanostatic Conditions from Chloride Solutions", Russian Journal of Electrochemistry, 56, 214-221(2020).
Laviron, E., Roullier, L., and Degrand, C.,"A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 112, 11-23(1980).
Luo, H., Shi, Z., Li, N., Gu, Z., and Zhuang, Q.,"Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode", Analytical Chemistry, 73, 915-920(2001).
Manzetti, S., and Gabriel, J.-C.P.,"Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control", International Nano Letters, 9, 31-49(2019).
Marra, M.C., Cunha, R.R., Muñoz, R.A., Batista, A.D., and Richter, E.M.,"Single‐run capillary electrophoresis method for the fast simultaneous determination of amoxicillin, clavulanate, and potassium", Journal of separation science, 40, 3557-3562(2017).
Martinez, J.L.,"Environmental pollution by antibiotics and by antibiotic resistance determinants", Environmental pollution, 157, 2893-2902(2009).
Meitl, M.A., Zhou, Y., Gaur, A., Jeon, S., Usrey, M.L., Strano, M.S., and Rogers, J.A.,"Solution casting and transfer printing single-walled carbon nanotube films", Nano Letters, 4, 1643-1647(2004).
Miller, J., and Dunn, B.,"Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures", Langmuir, 15, 799-806(1999).
Mook, W., Aroua, M., and Issabayeva, G.,"Prospective applications of renewable energy based electrochemical systems in wastewater treatment: A review", Renewable and sustainable energy reviews, 38, 36-46(2014).
Morrin, A., Killard, A.J., and Smyth, M.R.,"Electrochemical characterization of commercial and home-made screen-printed carbon electrodes", Analytical Letters, 36, 2021-2039(2003).
Muhammad, A., Yusof, N.A., Hajian, R., and Abdullah, J.,"Construction of an electrochemical sensor based on carbon nanotubes/gold nanoparticles for trace determination of amoxicillin in bovine milk", Sensors, 16, 56(2016).
Naota, T., Takaya, H., and Murahashi, S.-I.,"Ruthenium-catalyzed reactions for organic synthesis", Chemical reviews, 98, 2599-2660(1998).
Newman, J., and Tiedemann, W.,"Potential and Current Distribution in Electrochemical Cells: Interpretation of the Half‐Cell Voltage Measurements as a Function of Reference‐Electrode Location", Journal of The Electrochemical Society, 140, 1961(1993).
Organization, W.H.,"WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation", (2018).
Over, H.,"Ruthenium dioxide, a fascinating material for atomic scale surface chemistry", Applied Physics A, 75, 37-44(2002).
Pan, B., and Xing, B.,"Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental science & technology, 42, 9005-9013(2008).
Pan, Y., Tong, B., Shi, J., Zhao, W., Shen, J., Zhi, J., and Dong, Y.,"Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and ruthenium (III) ions", The Journal of Physical Chemistry C, 114, 8040-8047(2010).
Park, B.-O., Lokhande, C., Park, H.-S., Jung, K.-D., and Joo, O.-S.,"Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness", Journal of power sources, 134, 148-152(2004).
Park, J., Show, Y., Quaiserova, V., Galligan, J.J., Fink, G.D., and Swain, G.M.,"Diamond microelectrodes for use in biological environments", Journal of Electroanalytical Chemistry, 583, 56-68(2005).
Pereira, J.H., Reis, A.C., Homem, V., Silva, J.A., Alves, A., Borges, M.T., Boaventura, R.A., Vilar, V.J., and Nunes, O.C.,"Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation", Water research, 65, 307-320(2014).
Pham, T.H.Y., Mai, T.T., Nguyen, H.A., Chu, T.T.H., Vu, T.T.H., and Le, Q.H.,"Voltammetric Determination of Amoxicillin Using a Reduced Graphite Oxide Nanosheet Electrode", Journal of Analytical Methods in Chemistry, 2021, (2021).
Philipsen, H., and Monnens, W.,"Immersion and electrochemical deposition of Ru on Si", Electrochimica Acta, 274, 306-315(2018).
Pollap, A., Knihnicki, P., Kuśtrowski, P., Kozak, J., Gołda‐Cępa, M., Kotarba, A., and Kochana, J.,"Sensitive Voltammetric Amoxicillin Sensor Based on TiO2 Sol Modified by CMK‐3‐type Mesoporous Carbon and Gold Ganoparticles", Electroanalysis, 30, 2386-2396(2018).
Prado, T.M., Cincotto, F.H., Moraes, F.C., and Machado, S.A.,"Electrochemical Sensor‐Based Ruthenium Nanoparticles on Reduced Graphene Oxide for the Simultaneous Determination of Ethinylestradiol and Amoxicillin", Electroanalysis, 29, 1278-1285(2017).
Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey Jr, J.T., Ramasamy, M.S., Sahoo, N.G., and Cho, J.W.,"Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene", Progress in Polymer Science, 67, 1-47(2017).
Rahmi, Lelifajri, Julinawati, and Shabrina."Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions", CARBOHYDRATE POLYMERS, 170, 226-233(2017).
Rezaei, B., and Damiri, S.,"Electrochemistry and adsorptive stripping voltammetric determination of amoxicillin on a multiwalled carbon nanotubes modified glassy carbon electrode", Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21, 1577-1586(2009).
Rojas, J., Toro-Gonzalez, M., Molina-Higgins, M., and Castano, C.,"Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes", Materials Science and Engineering: B, 205, 28-35(2016).
Sahu, A., Jain, A., and Gulbake, A.,"The role of carbon nanotubes in nanobiomedicines", International Journal of Pharmacy and Pharmaceutical Sciences, 9, 235-251(2017).
Santos, D.P., Bergamini, M.F., and Zanoni, M.V.B.,"Voltammetric sensor for amoxicillin determination in human urine using polyglutamic acid/glutaraldehyde film", Sensors and actuators B: Chemical, 133, 398-403(2008).
Scott, C.D., Arepalli, S., Nikolaev, P., and Smalley, R.E.,"Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process", Applied Physics A, 72, 573-580(2001).
Scott, K.,"Electrochemical principles and characterization of bioelectrochemical systems", Microbial Electrochemical and Fuel Cells, 29-66(2016).
Sieben, J.M., Duarte, M.M., Mayer, C.E., and Bazán, J.C.,"Influence of ethylene glycol, ethanol and formic acid on platinum and ruthenium electrodeposition on carbon support material", Journal of applied electrochemistry, 39, 1045-1051(2009).
Staroszczyk, H., Sztuka, K., Wolska, J., Wojtasz-Pająk, A., and Kołodziejska, I.,"Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 707-712(2014).
Suni, I.I.,"Impedance methods for electrochemical sensors using nanomaterials", TrAC Trends in Analytical Chemistry, 27, 604-611(2008).
Tehrani, R.M., and Ab Ghani, S.,"MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor", Biosensors and Bioelectronics, 38, 278-283(2012).
ul Ain, N., Anis, I., Ahmed, F., Shah, M.R., Parveen, S., Faizi, S., and Ahmed, S.,"Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles", Sensors and Actuators B: Chemical, 265, 617-624(2018).
Ünal, K., Palabiyik, İ.M., Karacan, E., and Onur, F.,"Spectrophotometric determination of amoxicillin in pharmaceutical formulations", Turk J. Pharm. Sci, 5, 1-16(2008).
Valenga, M.G.P., Felsner, M.L., de Matos, C.F., de Castro, E.G., and Galli, A.,"Development and validation of voltammetric method for determination of amoxicillin in river water", Analytica Chimica Acta, 1138, 79-88(2020).
Wahang, C.-C.,"運用氧化石墨烯/單壁奈米碳管/碲化鉍修飾玻璃碳電極進行水中鎘之方波陽極析出伏安法分析", (2019).
Wang, J., Yin, G.-P., Zhang, J., Wang, Z., and Gao, Y.,"High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050(2007).
Weskamp, T., Schattenmann, W.C., Spiegler, M., and Herrmann, W.A.,"A novel class of ruthenium catalysts for olefin metathesis", Angewandte Chemie International Edition, 37, 2490-2493(1998).
Wong, A., Santos, A.M., Cincotto, F.H., Moraes, F.C., Fatibello-Filho, O., and Sotomayor, M.D.,"A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices", Talanta, 206, 120252(2020).
Xie, X.-L., Mai, Y.-W., and Zhou, X.-P.,"Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Materials science and engineering: R: Reports, 49, 89-112(2005).
Yan, Y.K., Melchart, M., Habtemariam, A., and Sadler, P.J.,"Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes", Chemical communications, 4764-4776(2005).
Yang, S.-P.O.,"鹼性溶液中鎳大環錯鹽聚合膜修飾電極對甲醇及苯甲醇之氧化電觸媒行為研究", (2004).
Yao, Y., Zhang, L., Xu, J., Wang, X., Duan, X., and Wen, Y.,"Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode", Journal of Electroanalytical Chemistry, 713, 1-8(2014).
Zia, A.I.,"Smart electrochemical sensing system for the real time detection of endocrine disrupting compounds and hormones: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronics Engineering at Massey University, Manawatu, New Zealand", (2015).
周貝倫."純化程序對奈米碳管表面特性影響之研究", (2006a).
周貝倫."純化程序對奈米碳管表面特性影響之研究", 中央大學環境工程研究所學位論文, 1-72(2006b).
胡啟章."電化學原理與方法", (2002).
盧怡君."以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安法分析", 中央大學環境工程研究所學位論文, 1-111(2015).
指導教授 秦靜如 審核日期 2022-5-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明