博碩士論文 108626006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.12.152.21
姓名 陳冠呈(Guan-Cheng Chen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 1999~2018年期間南海沿岸淺水區對颱風登陸時強度變化之影響
(Intensification of landfalling typhoons over the shallow South China coast during 1999~2018)
相關論文
★ 1980-2018年期間西北太平洋颱風大小變化之研究★ 利用衛星估計西北太平洋及南海颱風季節之垂直溫度結構
★ 二月份最強颱風:Wutip (2019) 之 大氣與海洋條件★ 颱風 Bavi (2020) 在東中國海淺海異常增強
★ 利用數值模式探討近岸海表面溫度對登陸颱風強度之影響★ 利用耦合模式探討颱風Bavi (2020)在東海的增強過程
★ 應用鍶-釹-鉛同位素探討大氣與水體環境中金屬來源與傳輸過程之研究★ 探究環境變化對原核生物群落生態系統功能的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在颱風的生長過程中會從海洋汲取大量的能量,因此海洋對於颱風來說彷彿巨大的能源儲存庫,扮演著非常重要的角色。海表面溫度越高,海氣熱通量會越高,颱風所形成的強度也會越強。此外,颱風與海洋之間的交互關係不僅與海表面有關,海表面底下的溫度結構也至關重要。當颱風經過海洋時,會產生垂直混合作用,將深層較冰冷的海水帶至海洋表面,造成海表溫度下降,稱之為SST Cooling。SST Cooling是颱風本身的負回饋效應的過程。當SST Cooling越強,海表溫度會變得越低溫,海洋可能無法提供更多的能量,進而使颱風強度減弱。
本研究主要分析1999年至2018年在西北太平洋之中,通過南海沿岸的淺海區域並且在登陸前強度增強或是維持的颱風。並研究「淺海」是否為強度增強或維持的關鍵因素。經研究發現到,對於登陸之前強度「增強」的颱風組別來說,如果沒有淺海的存在,SST Cooling會增加142%、海氣熱通量會減少92%。另外,對於登陸之前強度「維持」的颱風組別來說,SST Cooling會增加192%、海氣熱通量會減少75%。這都顯示出了如果沒有淺海的存在,海表溫度冷卻會大幅地增加、海洋供給颱風的能量會大幅地降低。主要原因為颱風在登陸之前所經過的海洋表面之下的冷水較少,再加上深度會受淺海的限制,使海表面至海洋底部的溫度皆能夠維持高溫,導致整層的平均溫度非常溫暖。因此,颱風在登陸之前不管如何攪拌海水,SST Cooling會很微弱,從而使海氣熱通量提高。颱風本身的負回饋效應大幅地受到抑制,使颱風強度在登陸之前增強或維持。
關鍵字 : 海表面溫度冷卻、颱風負回饋效應、淺海的影響
摘要(英) The large amount of energy will be transferred from the ocean during the growth of typhoons. Therefore, the ocean is like a huge source of energy for typhoons and plays an important role. The higher sea surface temperature (SST), the higher air-sea enthalpy flux and the stronger the intensity of typhoons. Besides, the interaction between typhoons and ocean is not only related to the sea surface. The thermal structure under the sea surface is important as well. When typhoons pass over the ocean, it will produce the vertical mixing and bring the colder water at the deeper layer to the sea surface. Causing the sea surface temperature decrease which is called SST cooling. SST cooling is the negative feedback effect of typhoon itself. When SST cooling is stronger, the sea surface temperature will get colder. The ocean may not be able to provide more air-sea enthalpy flux, which may weaken the intensity of typhoons.
This study mainly analyzes typhoons in the Western North Pacific during 1999 to 2018 that passed over the shallow South China coast and intensified or maintained their intensity before landfalling. And to discuss whether the “shallow water” is a crucial factor for intensification or maintenance. We found that for “Intensification” typhoons, if there is no shallow water, SST cooling will increase by 142% and the air-sea enthalpy flux will decrease by 92%. For “Maintenance” typhoons, SST cooling will increase by 192% and the air-sea enthalpy flux will decrease by 75%. It shows that if there is no shallow water, SST cooling will largely increase, and the air-sea enthalpy flux will largely reduce. The main reason is that there is less cold water under the sea surface where typhoons pass before making landfall. And the depth is limited by the shallow water. So the water temperature from the surface to the bottom could maintain high, resulting in a very warm average temperature of the entire layer. Therefore, no matter how typhoons mix the ocean, SST Cooling will be less. Causing the air-sea enthalpy flux increase. The negative feedback effect of typhoon itself will be largely suppressed, so the intensity of typhoons will intensify or maintain before making landfall.
Keywords : SST Cooling, the negative feedback effect of typhoon itself, the impact of shallow water
關鍵字(中) ★ 海表面溫度冷卻
★ 颱風負回饋效應
★ 淺海的影響
關鍵字(英) ★ SST Cooling
★ the negative feedback effect of typhoon itself
★ the impact of shallow water
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 v
圖目錄 xiii
第一章、緒論 1
1.1 前言與文獻回顧 1
1.2 研究動機與目的 7
1.3 論文架構 8
第二章、資料 9
2.1 颱風最佳路徑 9
2.2 水深地形 10
2.3 南海氣候場溫度資料 11
2.4 海表面溫度資料 12
2.5 近地表空氣溫度、露點溫度 14
2.6 垂直風切、相對濕度 14
2.7 海洋模式資料 15
2.7.1 HYCOM 15
2.7.2 ORAS5 16
第三章、研究方法 19
3.1 颱風參數 19
3.1.1 颱風強度 19
3.1.2 移動速度 20
3.1.3 最大風速半徑 21
3.1.4 六小時加強速率 21
3.2 研究區域 22
3.3 挑選颱風個案 22
3.3.1 颱風的資料篩選 23
3.3.2 颱風的分類 24
3.4 建立垂直溫度剖面 25
3.4.1 利用衛星與南海氣場資料的合成方法 26
1. 混合層深度(Mixed Layer Depth) 26
2. 混合層之下的溫度梯度(Temperature Gradient) 27
3. 如何建立垂直溫度剖面 28
3.4.2 利用HYCOM、ORAS5模式資料的方法 29
3.5 颱風的混合深度(Mixing Depth) 30
3.6 海氣熱通量(Air-Sea Enthalpy Flux) 32
3.7 無深度限制實驗(No Depth Restriction Experiment) 33
3.7.1無深度限制實驗(衛星與南海氣場資料合成方法) 34
3.7.2 無深度限制實驗(HYCOM、ORAS5模式資料) 34
3.8 垂直風切(Vertical Wind Shear) 35
3.9 相對濕度(Relative Humidity) 36
3.10 評鑑資料的方法 36
3.10.1相關係數(Correlation coeficient) 34
3.10.2顯著性檢定(Significant test) 34
第四章、研究結果 40
4.1 颱風分類的結果 40
4.2 颱風發生的月份 41
4.3 颱風的空間分布 42
4.4 淺海對於颱風的影響 44
4.4.1 加強(Intensification) 44
1. 1999年16號颱風 - Sam 44
2. 2000年23號颱風 - Wukong 44
3. 2001年5號颱風 - Durian 45
4. 2005年10號颱風 - Sanvu 45
5. 2009年16號颱風 - Koppu 45
6. 2010年4號颱風 - Chanthu 46
7. 2013年6號颱風 - Rumbia 46
8. 2013年17號颱風 - Usagi 47
9. 2014年9號颱風 - Rammasun 47
10. 2014年15號颱風 - Kalmaegi 47
11. 2015年22號颱風 - Mujigae 48
12. 2017年15號颱風 - Hato 48
4.4.2 維持(Maintenance) 49
1. 1999年5號颱風 - Leo 49
2. 1999年21號颱風 - York 49
3. 1999年26號颱風 - Dan 49
4. 2001年6號颱風 - Utor 50
5. 2001年10號颱風 - Yutu 50
6. 2003年9號颱風 - Imbudo 50
7. 2003年12號颱風 - Krovanh 51
8. 2006年7號颱風 - Prapiroon 51
9. 2009年7號颱風 - Molave 51
10. 2011年20號颱風 - Nesat 52
11. 2012年9號颱風 - Vicente 52
12. 2012年14號颱風 – Kai-Tak 53
13. 2016年24號颱風 – Sarika 53
14. 2018年26號颱風 – Mangkhut 53
4.4.3 綜合比較 54
4.5 HYCOM與ORAS5之結果 59
4.6 Non-Intensified特殊的颱風個案 61
4.6.1 2010年12號颱風 – Fanapi 62
4.6.2 2016年6號颱風 – Nida 62
4.6.3 2017年24號颱風 – Khanun 63
第五章、結論與未來工作 64
5.1 結論 64
5.2 未來工作 67
參考文獻 70
附表 76
附圖 90
參考文獻 Asuero, A.G.; Sayago, A.; Gonzalez, A.G., (2006) : The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem., 36, 41-59
Bleck, R., (2002) : An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates.Ocean modelling,4(1), 55-88.
Braun, S. A., J. A. Sippel, and D.S. Nolan, (2012) : The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow. Journal of the Atmospheric Sciences, 69(1): 236-257.
Chang, Y.-T., Lin, I.I., Huang, H.-C., Liao, Y.-C. and Lien, C.-C., (2020) : The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea. Sustainability, 12(3).
Chen, S. S., J. A. Knaff, and F. D. Marks, (2006) : Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208
Chu, J. H., Sampson, C. R., Levine, A. S., Fukada, E, (2002) : The joint typhoon warning center tropical cyclone best-tracks, 1945–2000. Ref, NRL/MR/, 16, 7540‐02
D′Asaro, E.A., Black, P.G., Centurioni, L.R., Chang, Y.T., Chen, S.S., Foster, R.C., Graber, H.C., Harr, P., Hormann, V., Lien, R.C., Lin, I.I., Sanford, T.B., Tang, T.Y. and Wu, C.C., (2014) : Impact of Typhoons on the Ocean in the Pacific. Bulletin of the American Meteorological Society, 95(9): 1405-1418.
de Boyer Montégut, C., (2004) : Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109(C12).
Di Leo, G. and Sardanelli, F., (2020) : Statistical significance: p value, 0.05 threshold, and applications to radiomics-reasons for a conservative approach. Eur Radiol Exp, 4(1): 18.
Emanuel, K., (2015) : Effect of Upper-Ocean Evolution on Projected Trends in Tropical Cyclone Activity. Journal of Climate, 28(20): 8165-8170.
Frank, W. M., and E. A. Ritchie, (2001) : Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.
Glenn, S.M., Miles, T.N., Seroka, G.N., Xu, Y., Forney, R.K., Yu, F., Roarty, H., Schofield, O. and Kohut, J., (2016) : Stratified coastal ocean interactions with tropical cyclones. Nat Commun, 7: 10887.
Gray W. M., (1968) : Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev, 96, 669–700.
Gray W. M., (1975) : Tropical cyclone genesis. Dept. of Atmosphere Science Paper 234, Colorado State University, Fort Collins, CO, 121pp.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., et al. (2020) : The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorlogical Society, 1-51.
Journal of the Royal Meteorological Society, 2020,1–51.
Huang, H.-C., Boucharel, J., Lin, I.I., Jin, F.-F., Lien, C.-C. and Pun, I.-F., (2017) : Air-sea fluxes for Hurricane Patricia (2015) : Comparison with supertyphoon Haiyan (2013) and under different ENSO conditions. Journal of Geophysical Research: Oceans, 122(8): 6076-6089.
J.-H. Chu, C. R. Sampson, A. S. Levine, E. Fukada,(2002) : The Joint Typhoon Warning Center Tropical Cyclone Best Tracks, 1945-2000, Naval Research Laboratory.
Joseph, G., Ed,(2005) : Fundamentals of Remote Sensing; Polykam Printers: New Delhi.
Kanada, S., Tsujino, S., Aiki, H., Yoshioka, M.K., Miyazawa, Y., Tsuboki, K. and Takayabu, I.,(2017) : Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010). Journal of Geophysical Research: Atmospheres, 122(24): 13,245-13,262.
Karnauskas, K.B., Zhang, L. and Emanuel, K.A., (2021) : The Feedback of Cold Wakes on Tropical Cyclones. Geophysical Research Letters, 48(7).
Kim, S.-H., Moon, I.-J. and Chu, P.-S., (2020) : An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes. Environmental Research Letters, 15(9).
Knaff, J. A., C. R. Sampson, and M. DeMaria, (2005) : An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20(4), 688-699.
Ko, D.S., Chao, S.-Y., Wu, C.-C. and Lin, I.I., (2014) : Impacts of typhoon megi (2010) on the South China Sea. Journal of Geophysical Research: Oceans, 119(7): 4474-4489.
Levinson, D.H., Knapp, K.R., Kruk, M.C., J, H. and Kossin, J.P., (2010) : The International Best Track Archive for Climate Stewardship (IBTrACS) Project: Overview of Methods and Indian Ocean Statistics, Indian Ocean Tropical Cyclones and Climate Change, pp. 215-221.
Lin, I.I., Wu, C.-C., Pun, I.-F., and Ko, D.-S., (2008) : Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Monthly Weather Review, 136(9): 3288-3306.
Lin, I.I., Rogers, R.F., Huang, H.-C., Liao, Y.-C., Herndon, D., Yu, J.-Y., Chang, Y.-T., Zhang, J.A., Patricola, C.M., Pun, I.-F. and Lien, C.-C., (2021) : A Tale of Two Rapidly-Intensifying Supertyphoons: Hagibis (2019) and Haiyan (2013). Bulletin of the American Meteorological Society: 1-59.
Lin, S., Zhang, W.-Z., Shang, S.-P. and Hong, H.-S., (2017) : Ocean response to typhoons in the western North Pacific: Composite results from Argo data. Deep Sea Research Part I: Oceanographic Research Papers, 123: 62-74.
Liu, K.S. and Chan, J.C.L., (2020) : Recent increase in extreme intensity of tropical cyclones making landfall in South China. Climate Dynamics, 55(5-6): 1059-1074.
Li, L. and Chakraborty, P., (2020) : Slower decay of landfalling hurricanes in a warming world. Nature, 587(7833): 230-234.
National Geophysical Data Center (2006) : 2-minute Gridded Global Relief Data (ETOPO2v2), Natl. Oceanic and Atmos. Admin., U. S. Dept.of Commerce (http://www.ngdc.noaa.gov/mgglfliers/06mggO l.html).
Park, M.-S., R. L. Elsberry, and P. A. Harr, (2013) : Vertical wind shear and ocean heat contents as environmental modulators of western North Pacific tropical cyclone intensification and decay. Trop. Cyclone Res. Rev., 1, 448–457.
Patel, M., Chiao, S. and Tan, Q., (2021) : An Observational Study of Aerosols and Tropical Cyclones over the Eastern Atlantic Ocean Basin for Recent Hurricane Seasons. Atmosphere, 12(8).
Powell, M.D., Vickery, P.J., Reinhold, T.A., (2003) : Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.
Price, J.F., (1981) : Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153-175.
Price, J., (2009) : Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Science, 5(3): 351-368.
Potter, H., DiMarco, S.F. and Knap, A.H., (2019) : Tropical Cyclone Heat Potential and the Rapid Intensification of Hurricane Harvey in the Texas Bight. Journal of Geophysical Research: Oceans, 124(4): 2440-2451.
Pun, I.-F., Chan, J.C., Lin, I.-I., Chan, K.T., Price, J.F., Ko, D.S., Lien, C.-C., Wu, Y.-L. and Huang, H.-C., (2019) : Rapid intensification of Typhoon Hato (2017) over shallow water. Sustainability, 11(13): 3709.
Sindhu, B., I. Suresh, A. S. Unnikrishnan, N. V. Bhatkar, S. Neetu, and G. S. Michael (2007), Improved bathymetric datasets for the shallow water
regions in the Indian Ocean, J. Earth Syst. Sci., 116, 261–274.
Sindhu, B., I. Suresh, A. S. Unnikrishnan, N. V. Bhatkar, S. Neetu, and G. S. Michael (2007), Improved bathymetric datasets for the shallow water
regions in the Indian Ocean, J. Earth Syst. Sci., 116, 261–274.
Sindhu, B., I. Suresh, A. S. Unnikrishnan, N. V. Bhatkar, S. Neetu, and G. S. Michael (2007), Improved bathymetric datasets for the shallow water
regions in the Indian Ocean, J. Earth Syst. Sci., 116, 261–274.
Sindhu, B., I. Suresh, A. S. Unnikrishnan, N. V. Bhatkar, S. Neetu, and G. S. Michael., (2007) : Improved bathymetric datasets for the shallow water regions in the Indian Ocean, J. Earth Syst. Sci., 116, 261–274.
Wu, L., Su, H., Fovell, R.G., Wang, B., Shen, J.T., Kahn, B.H., Hristova‐Veleva, S.M., Lambrigtsen, B.H., Fetzer, E.J. and Jiang, J.H., (2012) : Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophysical Research Letters, 39(20).
Xiong, X. and Butler, J.J., (2020) : MODIS and VIIRS Calibration History and Future Outlook. Remote Sensing, 12(16).
Zehr R., (2003) : Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345 –356.
Zeng, L., Wang, D., Chen, J., Wang, W. and Chen, R., (2016) : SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919-2014. Sci Data, 3: 160029.
Zhang, J.A., Cione, J.J., Kalina, E.A., Uhlhorn, E.W., Hock, T. and Smith, J.A., (2017) : Observations of Infrared Sea Surface Temperature and Air–Sea Interaction in Hurricane Edouard (2014) Using GPS Dropsondes. Journal of Atmospheric and Oceanic Technology, 34(6): 1333-1349.
Zhang, Z., Wang, Y., Zhang, W. and Xu, J., (2019) : Coastal ocean response and its feedback to Typhoon Hato (2017) over the South China Sea: a numerical study. Journal of Geophysical Research: Atmospheres, 124(24): 13731-13749.
J.-H. Chu, C. R. Sampson, A. S. Levine, E. Fukada, The
Joint Typhoon Warning Center Tropical Cyclone Best-
Tracks, 1945–2000, Naval Research Laboratory
Reference Number NRL/MR/7540-02-16 (2002).
J.-H. Chu, C. R. Sampson, A. S. Levine, E. Fukada, The
Joint Typhoon Warning Center Tropical Cyclone Best-
Tracks, 1945–2000, Naval Research Laboratory
Reference Number NRL/MR/7540-02-16 (2002).
Zuo, H., Balmaseda, M.A., Mogensen, K. and Tietsche, S. (2018) : OCEAN5: The ECMWF Ocean Reanalysis System and itsreal-time analysis component. Technical Report 823, ECMWF,Reading, UK.
指導教授 潘任飛(Iam-Fei Pun) 審核日期 2022-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明