博碩士論文 107523036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.145.47.253
姓名 蘇子皓(Tzu-Hao Su)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 上行多載波非正交多重接取系統傳輸功率 最小化之資源配置研究
(Resource Allocation for Power Minimization in Multiuser Multicarrier NOMA Uplink Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-1以後開放)
摘要(中) 論文摘要

本論文提出一個多使用者多載波非正交多重接取系統(Multiuser Multicarrier NOMA),搭配使用者選擇分組演算法、子載波配置演算法及位元配置演算法來降低整體系統的傳輸功率。在多使用者多載波非正交多重接取系統中,每一個子載波可以分配給一群由多組使用者組成的用戶們進行資料傳輸。本論文以兩個使用者為一組,兩個組為一群,透過使用比較正交分頻多工系統中單一使用者更低功率的調變方式進行資料傳輸以藉此降低傳輸所需的功率。然而,因為在多天線架構下同時進行傳輸,各組使用者亦會接收到來自其他天線的傳輸干擾(Inter-set Interference);再者,由於多使用者共用同一段頻帶,即共享同一個子載波作資料傳輸,故會產生同頻帶之間的干擾(Co-channel Interference),而這些干擾類型也是多使用者多載波非正交多重接取系統所主要需克服的難題。故為了因應上述干擾,論文中採用Zero-forcing Beamforming(ZFBF)以消除來自其他天線所傳出的干擾,同時搭配連續干擾消除技術(SIC)以消除來自傳輸功率較大的使用者之干擾。
摘要(英) Abstract

In this thesis, a multiuser multicarrier non-orthogonal multiple access system is proposed to reduce the total required transmit power in uplink transmission with user selection, subcarrier allocation, and bit allocation algorithms. In multiuser multicarrier non-orthogonal multiple access systems, each subcarrier can be assigned to a cluster of users composed of multiple sets for data transmission. This thesis takes two users as a set and two sets as a cluster; the system compares the required transmit power of each cluster of users in each subcarrier, and then allocates subcarriers to reduce the overall system required transmit power. However, due to simultaneous transmission in multi antenna architecture, users in each set will also receive inter-set interference from other antennas. Moreover, since multiple users share the same frequency band, that is to say, they share the same subcarrier for data transmission, so there will be co-channel interference in the same frequency band. These types of interference are also the main problems to be overcome in multi-antenna non-orthogonal multiple access systems. Therefore, in order to cope with the above-mentioned interference, zero-forcing beamforming (ZFBF) is used to eliminate the interference from other antennas, and the successive interference cancellation (SIC) is used to eliminate the interference from the weak set user with the lower channel gain between two users in a set.
關鍵字(中) ★ 多載波
★ 非正交多重接取系統
★ 上行
★ 資源配置
關鍵字(英) ★ Multiple Input Multiple Output (MIMO)
★ non-orthogonal multiple access (NOMA)
★ uplink
★ zero-Forcing Beamforming (ZFBF)
★ successive interference cancellation (SIC)
論文目次 Contents

論文摘要 i
Abstract ii
Contents iv
List of Figures vi
List of Tables vi
Chapter1. Introduction - 1 -
1-1 Multiple-Input Multiple-Output System - 1 -
1-2 Non-orthogonal Multiple Access system - 2 -
1-3 Zero-Forcing Beamforming - 3 -
1-4 Organization - 4 -
1-5 Contribution - 5 -
1-6 Abbreviations - 5 -
1-7 Notation - 7 -
Chapter2. System Model and Problem Formulation - 9 -
2-1 Non-Orthogonal Multiple Access System - 9 -
2-2 Problem Formulation - 18 -
Chapter3. Resource Allocation - 20 -
3-1 Proposed User Selection Scheme - 20 -
3-2 Proposed Subcarrier Allocation Scheme - 24 -
3-3 Modulation Modes Conditions - 28 -
3-4 Proposed Bit Allocation Scheme - 33 -
Chapter4. Simulation Results - 35 -
4-1 Simulation Model - 35 -
4-2 Simulation Results - 37 -
Chapter5. Computational Complexity - 42 -
Chapter6. Conclusion - 44 -
Reference - 45 -

List of Figures
Figure 1-1: NOMA with SIC in an uplink scenario - 2 -
Figure 2 1 uplink NOMA system with N transmit antennas at BS - 9 -
Figure 4-1: The largest channel power difference in total users is 10 dB. - 39 -
Figure 4-2: The largest channel power difference between all
selected users is 10 dB. L=3. - 39 -
Figure 4-3: The largest channel power difference between all
selected users is 30 dB. L=3. - 40 -
Figure 4-4: The largest channel power difference between all
selected users is 10 dB. L=3. - 40 -
Figure 4-5: The largest channel power difference between all
selected users is 30 dB. L=3. - 41 -

List of Tables
Table I: List of Abbreviations……………………………………..…. - 5 -
Table II: List of Parameters....………………………………….......... - 7 –
Table III: Cases of illustrating bit allocation to two sets in a cluster...- 32 -
Table IV: Parameter values in the simulation.…………………….... - 36 -
參考文獻 Reference

[1] S. Vashi, J. Ram, J. Modi, S. Verma and C. Prakash, “Internet of Things (IoT): A vision, architectural elements, and security issues,” 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, pp. 492-496, 2017.
[2] F. Rusek et al., “Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, Jan. 2013.
[3] E. G. Larsson, O. Edfors, F. Tufvesson and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, Fe. 2014.
[4] A. Goldsmith, S. A. Jafar, N. Jindal and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684-702, Jun. 2003.
[5] Z. Ding et al., “Application of Non-Orthogonal Multiple Access in LTE and 5G Networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185-191, Feb. 2017.
[6] Y. Liu, G. Pan, H. Zhang and M. Song, “On the Capacity Comparison Between MIMO-NOMA and MIMO-OMA,” IEEE Access, vol. 4, pp. 2123-2129, 2016.
[7] K. Jiang, T. Jing, Y. Huo, F. Zhang and Z. Li, “SIC-Based Secrecy Performance in Uplink NOMA Multi-Eavesdropper Wiretap Channels,” IEEE Access, vol. 6, pp. 19664-19680, 2018.
[8] T. K. Lyu, “Capacity of multi-user MIMO systems with MMSE and ZF precoding,” 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, pp. 1083-1084, 2016.
[9] Z. Ding, F. Adachi and H. V. Poor, “The Application of MIMO to Non-Orthogonal Multiple Access,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 537-552, Jan. 2016.
[10] Z. Ding, R. Schober and H. V. Poor, “On the design of MIMO-NOMA downlink and uplink transmission,” 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1-6, 2016.
[11] Y. H. Huang, "Performance Analysis of Uplink MIMO-NOMA Systems in the Presence of Channel Estimation Error," Master′s thesis, Department of Communication Engineering, National Central University, Taoyuan County, 2018.
[12] C. j. Chen and L. c. Wang, “Performance Analysis of Scheduling in Multiuser MIMO Systems with Zero-Forcing Receivers,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 7, pp. 1435-1445, Sep. 2007.
[13] B. Kimy et al., “Non-orthogonal Multiple Access in a Downlink Multiuser Beamforming System,” MILCOM 2013 - 2013 IEEE Military Communications Conference, San Diego, CA, pp. 1278-1283, 2013.
[14] B. Kim et al., “Uplink NOMA with Multi-Antenna,” 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, pp. 1-5, 2015.
[15] S. Liu, C. Zhang and G. Lyu, “User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system,” 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 2561-2565, 2015.
[16] Y. H. Chen, Y. F. Chen, S. M. Tseng, and D. F. Tseng, “Low Complexity User Selection and Power Allocation for Uplink NOMA Beamforming Systems,” Wireless Pers Commun 111, 1413–1429, 2020.
[17] W. Liu, L. L. Yang and L. Hanzo, “SVD-Assisted Multiuser Transmitter and Multiuser Detector Design for MIMO Systems,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 1016-1021, Feb. 2009.
[18] T. Takeda and K. Higuchi, “Enhanced User Fairness Using Non-Orthogonal Access with SIC in Cellular Uplink,” 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, CA, pp. 1-5, 2011.
[19] D. Tse, P. Viswanath, “Fundamentals of Wireless Communication,” Cambridge University Press, 2005.
[20] Y. F. Chen and J. W. Chen, “A Fast Subcarrier, Bit, and Power Allocation Algorithm for Multiuser OFDM-Based Systems,” IEEE Trans. Vehicular Technology, Vol. 57, Issue: 2, pp. 873-811, Mar. 2008.
[21] Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (NOMA),” IEEE PIMRC, pp. 611-615, Sept. 2013.
[22] J. H. Tseng, Y. F. Chen, and C. L. Wang, "User Selection and Resource Allocation Algorithms for Multicarrier NOMA Systems on Downlink Beamforming," in IEEE Access, vol. 8, pp. 59211-59224, 2020.
[23] W.Cai; C.Chen; L.Bai; Y.Jin; J.Choi,“Subcarrier and power allocation scheme for downlink OFDM-NOMA systems” IET Signal Processing, 2017, pp. 51-58.
[24] J.M. Torrance and L. Hanzo, “Optimisation of switching levels for adaptive modulation in slow Rayleigh fading,” Electronics Letters, Vol. 32, Issue: 13, pp. 1167-1169, Jun. 1996.
[25] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels in wideband communication systems, “IEEE Global Telecommunication Conference,” vol.6, pp.3287-3291, Nov. 2001.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明