博碩士論文 108523022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.222.106.205
姓名 林岱明(Tai-Ming Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於SVM與CNN的碼率控制方法應用於HEVC畫面內編碼
(SVM/CNN-Based Approach to Rate Control in HEVC Intra Coding)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-21以後開放)
摘要(中) 在現今的社會,我們對於解析度的要求越來越高,為了因應我們所需高解析度的影像,高效率視訊編碼(HEVC)能比上一代的視訊編碼高出兩倍的壓縮率,這是因為在HEVC的壓縮技術中,使用了編碼單元、預測單元、轉換單元以及量化等方式。在網路傳輸方面,為了使傳輸的圖像有較低的失真量以及較好的效能,碼率控制就是在視訊編碼標準中實際使用的基本要素,在碼率控制中非常依賴位元速率以及編碼參數(量化參數、拉格朗日乘數)間的精確度。對於畫面間預測,可以根據先前編碼圖像的資訊來精確的更新參數以適應影片的內容,但對於畫面內預測卻是一大挑戰。在本論文中,為了能使畫面內預測有更精確的碼率控制方法,除了引用卷積神經網路外來預測每個編碼樹單元的參數外,也引用了支持向量機模型的特徵來進行訓練資料的分類,透過訓練資料的分類區分出平滑區塊以及複雜區塊後再進行卷積神經網路模型的訓練,使卷積神經網路模型預測更為精確。實驗結果表明,基於卷積神經網路以及支持向量機的方法,相較於高效率視訊編碼中HM 16.0的碼率控制方法的部分,在位元錯誤率方面降低了0.677%,且編碼效能也提升了0.78%。
摘要(英) In today′s society, we have higher and higher requirements for resolution. In order to meet our needs for high-resolution images, High-Efficiency Video Coding(HEVC) can be twice as compressed as the previous generation of video coding. Because in the compression technology of HEVC, coding units, prediction units, transform units, and quantization methods are used. In terms of network transmission, in order to make the transmitted image have lower distortion and better performance, rate control is the basic element actually used in the video coding standard. Rate control scheme typically builds a model that characterizes the relationship between Bitrate and a coding parameter, e.g. quantization parameters and Lagrange multiplier(λ). For inter prediction, the parameters can be accurately updated based on the information of the previously coded image to adapt to the content of the video, however for intra prediction, it’s a challenge. In this paper, in order to enable a more accurate rate control method for intra prediction, in addition to quoting the convolutional neural network(CNN) to predict the parameters of each coding tree unit, the features of the support vector machine(SVM) model are also used to classify the training data. After distinguishing smooth and complex blocks through the classification of training data, making CNN model training is more accurate. The experimental results show that the method based on CNN and SVM reduces the bitrate error by 0.677% compared with The rate control method of HM 16.0 in HEVC and the coding performance is also increased by 0.78%.
關鍵字(中) ★ 高效率視訊編碼
★ 碼率控制
★ 畫面內預測
★ 支持向量機
★ 卷積神經網路
關鍵字(英)
論文目次 論文摘要 I
Abstract II
致謝 III
章節目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1高效率視訊編碼(High Efficiency Video Coding,HEVC) 1
1.2 HEVC架構介紹 2
1.2.1編碼單元(Coding Unit,CU) 3
1.2.2預測單元(Prediction Unit,PU) 4
1.2.3轉換單元(Transform Unit,TU) 5
1.2.4量化(Quantization) 5
1.2.5碼率失真最佳化(Rate-Distortion Optimization Routin,RDO) 7
1.2.6畫面內編碼預測(Intra Prediction) 9
1.3支持向量機(Support Vector Machine,SVM)介紹 12
1.4深度學習(Deep Learning) 15
1.4.1人工神經網路(Artificial Neural Network,ANN) 16
1.4.2深度神經網路(Deep Neural Network,DNN) 17
1.4.3卷積神經網路(Convolutional Neural Networks,CNN) 17
1.5研究動機與目的 21
1.6論文架構 21
第二章 相關文獻 22
2.1碼率控制(Rate Control) 22
2.1.1碼率控制之畫面內預測架構 23
2.1.2位元分配(Bit Allocation) 24
2.1.3 Frame Level & LCU Level參數運算、更新 26
2.2 A convolutional neural network-based approach to rate control in HEVC intra coding 29
2.2.1整體系統架構介紹 29
2.2.2實驗方法 30
2.2.3實驗結果 35
2.3 SVM應用於HEVC編碼單元(CU)快速深度決策演算法 37
2.3.1支持向量機(Support Vector Machine,SVM)特徵選取 37
2.3.2快速深度決策演算法 40
2.3.3模型訓練&量化參數的選擇 41
2.3.4模型樣本數量縮減 45
2.3.5實驗結果 48
第三章 基於CNN與SVM的碼率控制方法應用於HEVC畫面內編碼 49
3.1整體系統架構 50
3.2 CNN模型訓練 51
3.2.1訓練環境配置 51
3.2.2訓練資料的選擇、提取 52
3.2.3 CNN模型架構及訓練 59
3.2.4 CNN模型效能測試 63
3.2.5 CNN模型在HEVC編碼軟體中的應用 64
3.3實驗結果與分析 65
3.3.1相關函數定義 66
3.3.2整體實驗結果 67
3.3.3 SVM分類效能分析 71
第四章 結論與未來展望 78
參考文獻 79
參考文獻 [1] “Coding of audio-visual objects - Part 2: Visual,” in ISO/IEC 14496-2(MPEG-4 Visual Version 1), Apr. 1999.
[2] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen, U.K.: John Wiley & Sons, 2003.
[3] JCT-VC, “High efficiency video coding (HEVC) test model 15(HM15) encoder description,” JCTVC-Q1002, JCT-VC Meeting, Valencia, ES, Apr. 2014.
[4] G.J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “ Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. CSVT, vol. 22, no. 12, Dec. 2012.
[5] S.J. Cai, “Reduction of computation complexity for HEVC intra prediction with support vector machine,” National Central University, Master Thesis, Jun 2017.
[6] Y. Li, B. Li, D. Liu and Z. Chen, "A convolutional neural network-based approach to rate control in HEVC intra coding," 2017 IEEE Visual Communications and Image Processing (VCIP), 2017, pp. 1-4, doi: 10.1109/VCIP.2017.8305050.
[7] B. Li, H. Li, L. Li and J. Zhang, “λ domain rate control algorithm for high efficiency video coding”, IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3841-3854, Sept 2014.
[8] L. Li, B. Li, H. Li and C. W. Chen, "λ -Domain Optimal Bit Allocation Algorithm for High Efficiency Video Coding," in IEEE Transactions on Circuits and Systems for Video Technology, vol.28, no. 1, pp. 130-142, Jan. 2018, doi: 10.1109/TCSVT.2016.2598672.
指導教授 林銀議 審核日期 2022-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明