參考文獻 |
[1] [Online].Available:https://www.ithome.com.tw/news/149388 /[Accessed April. 10, 2022.]
[2] [Online] .Available: https://www.cloudflare.com/zh-tw/learning/ddos/what-is-a-ddos-attack/[ Accessed Oct. 01, 2021.]
[3] Kumar, "Understanding denial of service (DoS) attacks using OSI reference model", International Journal of Education and Science Research, 2014.
[4] Khajurial Amit and Srivastava Roshan, "Analysis of the DDoS Defense Strategies in Cloud Computing", international journal of enhanced research in management & computer applications, vol. 2, no. 2, February 2013.
[5] Subramaniam.T.K, "Volume-based attacks Distributed Denial of Service attacks",International Journal of Information Technology, Control and Automation (IJITCA) Vol. 6, No.2, April 2016.
[6] [Online].Available: https://blog.cloudflare.com/zh-tw/ddos-attack-trends-for-2021-q4-zh-tw/[ Accessed Oct. 01, 2021.]
[7] [Online].Available:
https://www.netadmin.com.tw/netadmin/zhtw/technology/F332544D7A274E8AAAF7D0295328B744[Accessed April. 10, 2022.]
[8] Stephen M. Specht, Ruby B. Lee“Distributed Denial of Service: Taxonomies of Attacks, Tools and Countermeasures”, In Proceedings of the International Conferences on Parallel and Distributed system, pp. 543-550, September 2004. "
[9] M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," Proc. USENIX Systems Administration Conf. (LISA′99), Nov. 1999.
[10] T. Ditcheva and Lisa Fowler, “Signature-based Intrusion Detection” class notes for COMP290-040, University of North Carolina at Chapel Hill, Feb. 2005.
[11] LIU, Zaoxing, et al. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches. In: 30th USENIX Security Symposium (USENIX Security 21). 2021. p. 3829-3846.
[12] Čisar, Petar, and Sanja Maravić Čisar. "A Flow-based Algorithm for Statistical Anomaly Detection." 7th International Symposium of Hungarian Researches on Computational Intelligence, Budapest. 2006.
[13] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, "Statistical approaches to ddos attack detection and response," in DARPA Information Survivability Confeience and Exposition, 2003. Proceedings, vol. 1. IEEE Press, 2003, pp. 303-314.
[14] J. Bhayo, R. Jafaq, A. Ahmed, S. Hameed and S. A. Shah, "A Time-Efficient Approach Toward DDoS Attack Detection in IoT Network Using SDN," in IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3612-3630, 1 March1, 2022, doi: 10.1109/JIOT.2021.3098029.
[15] [Online] .https://scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection[ Accessed Mar. 10, 2021.]
[16] P.Louridas,C.Ebert, "Machine Learning" in IEEE Software, Volume: 33, Issue: 5, Sept.-Oct. 2016.
[17] [Online] .Available: https://www.sap.com/taiwan/insights/what-is-machine-learning.html[ Accessed Feb. 22, 2022.]
[18] Lamrini, Bouchra, et al. "Anomaly Detection using Similarity-based One-Class SVM for Network Traffic Characterization." DX@ Safeprocess. 2018.
[19] S.Seufert,D.O’Brien.”Machine Learning for Automatic Defense against Distributed Denial of Service Attacks“, IEEE International conference on Communications ,Glasgow,pp. 1217-1222,2007.
[20] R.Doshi,N.Apthorpe,”Machine Learning DDoS Detection for Consumer Internet of Things Devices”, 2018 IEEE Security and Privacy Workshops (SPW), August. 2018.
[21] R. Braga, E. Mota and A. Passito, "Lightweight DDoS flooding attack detection using NOX/OpenFlow," IEEE Local Computer Network Conference, 2010, pp. 408-415, doi: 10.1109/LCN.2010.5735752.
[22] A. Saied, R. E. Overill and T. Radzik, "Detection of known and unknown DDoS attacks using Artificial Neural Networks", Neurocomputing, vol. 172, pp. 385-393, 2016.
[23] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi and M. Ghogho, "Deep learning approach for Network Intrusion Detection in Software Defined Networking," 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), 2016, pp. 258-263, doi: 10.1109/WINCOM.2016.7777224.
[24] L. Barki, A. Shidling and N. Meti, "Detection of distributed denial of service attacks in software defined networks", IEEE International Conference on Advances in Computing Communications and Informatics, pp. 2576-2581, September. 2016.
[25] [Online].Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html[Accessed Mar. 10, 2021.]
[26] A. RRNYI, " ON MEASURES OF ENTROPY AND INFORMATION”in Proceedings of the fourth Berkeley symposium on mathematical Statistics and probability, June 1961, vol. 1,pp.547-561.
[27] N.Zhang, F.Jaafar, " Low-Rate DoS Attack Detection Using PSD Based Entropy and Machine Learning", in 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud), 21-23, June, 2019.
[28] H. Liu, Y. Sun, V C Valgenti et al., "Trustguard: A flow-level reputation-based DDoS defense system", Consumer Communications and Networking Conference (CCNC) 2011 IEEE, pp. 287-291, 2011.
[29] G. No and I. Ra, "An efficient and reliable DDoS attack detection using a fast entropy computation method", Communications and Information Technology 2009. ISCIT 2009.9th International Symposium on, pp. 1223-1228, 2009.
[30] [Online] .https://zh.wikipedia.org/wiki/卷积[ Accessed Mar. 10, 2022.]
[31] [Online] .https://zh.wikipedia.org/wiki/68–95–99.7法則[ Accessed Mar. 10, 2022.]
[32] N. M. Yungaicela-Naula, C. Vargas-Rosales and J. A. Perez-Diaz, "SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using Machine and Deep Learning," in IEEE Access, vol. 9, pp. 108495-108512, 2021, doi: 10.1109/ACCESS.2021.3101650.
[33] V. H. Bezerra, V. G. T. da Costa, S. B. Junior, R. S. Miani and B. B. Zarpelo, "IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices", Sensors, 2019.
[34] David M.J. Tax, Robert P.W. Duin. Support vector domain description[J]. Pattern recognition letters, 1999, 20(11-13): 1191-1199.
[35] [Online] .https://ieee-dataport.org/open-access/denial-service-and-man-middle-attacks-programmable-logic-controllers[Accessed Mar. 10, 2022.] |