博碩士論文 109322042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.137.187.233
姓名 陳奕心(Yi-Sin Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 規則波形之砂地盤受震反應:離心試驗與數值模擬
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-26以後開放)
摘要(中) 台灣位於菲律賓海板塊與歐亞大陸板塊的交界帶,因此時常發生地震,而地震期間可能會伴隨著土壤液化的發生,導致地表沉陷、建築物倒塌等災害。故本研究以離心機模型試驗之數據,分析自由場砂土層在不同深度的受震反應,並利用一維地盤反應分析軟體DEEPSOIL搭配動態強度試驗之結果擬合土壤模型及孔隙水壓生成模型進行模擬與分析,最後探討離心模型試驗與數值模擬分析之地盤的受震反應。
研究結果顯示,當土層尚未液化時,越接近地表的土層,加速度振幅及尖峰地表加速度會越有放大的趨勢,傅氏譜幅值具有放大效應,且在頻率為1Hz及3Hz處可觀察到較明顯的峰值;而當土層發生液化時,剪力波便無法順利傳遞,導致加速度振幅及尖峰地表加速度會有衰減的趨勢,頻率為1Hz及3Hz處之傅氏譜幅值會有縮小的現象,反而在較高頻處有放大的現象。且隨著震動強度的增加,識別出之土層主頻會隨之減小。以DEEPSOIL透過給定恆定阻尼比模擬乾砂試體,使數值模擬結果為最符合離心模型試驗結果,再將其動態性質與共振柱試驗結果比較,可以發現在相同剪應變下,DEEPSOIL所設定之阻尼比與共振柱試驗獲得之阻尼比皆不會相差太多。以DEEPSOIL透過調整孔隙水壓模型參數模擬飽和砂試體,使數值模擬與離心模型試驗結果為最相符的狀態,可觀察到調整參數後數值模擬的加速度振幅皆與離心模型試驗的振幅更相符。數值模擬於淺層處激發的超額孔隙水壓皆高於離心模型試驗的結果,而數值模擬於緊砂層所激發的超額孔隙水壓皆低於離心模型試驗的結果。
摘要(英) Taiwan is located at the junction of the Philippine Sea Plate and the Eurasian Plate, so earthquakes often occur. During the earthquake, soil liquefaction may occur, resulting in surface subsidence and building collapse. Therefore, this study uses the data of the centrifuge model test to analyze the seismic response of the free-field at different depths and uses the one-dimensional ground response analysis software DEEPSOIL to match the results of the dynamic test to fit the soil model and the pore water pressure generation model. Finally, the centrifuge model test and numerical simulation analysis of the seismic ground response are discussed.
The results show that when the soil layer has not liquefied, the closer the soil layer is to the surface, the more the acceleration amplitude and the peak ground acceleration will be amplified. When the soil layer is liquefied, the shear wave cannot be transmitted, resulting in the tendency of acceleration amplitude and peak ground acceleration to decrease. And as the vibration intensity increases, the predominant frequency of the identified soil layer will decrease accordingly. Using DEEPSOIL to simulate the dry sand sample through a given constant damping ratio, the numerical simulation results are most consistent with the results of the centrifuge model test. The damping ratio is not much different from the damping obtained from the resonant column test. Using DEEPSOIL to simulate saturated sand by adjusting the pore water pressure model parameters, the results of the numerical simulation and the centrifuge model test are most consistent. The excess pore water pressure excited by the numerical simulation in the shallow layer is higher than that of the centrifuge model test, while the excess pore water pressure excited by the numerical simulation in the tight sand layer is lower than the result of the centrifuge model test.
關鍵字(中) ★ 土壤液化
★ 地盤反應分析
★ 動態強度試驗
★ DEEPSOIL
★ 離心模型試驗
關鍵字(英) ★ soil liquefaction
★ ground response analysis
★ DEEPSOIL
★ centrifuge test
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究內容與流程 1
1-3 論文架構 2
第二章 文獻回顧 3
2-1 土壤液化 3
2-1-1 土壤液化定義 3
2-1-2 初始液化 4
2-1-3 反覆流動性 4
2-1-4 流動液化 4
2-2 反覆動態三軸試驗 5
2-2-1 試驗原理 5
2-2-2 反覆應力比(Cyclic stress ratio) 6
2-3 反覆單剪試驗 7
2-3-1 試驗原理 7
2-3-2 反覆應力比(Cyclic stress ratio) 8
2-4 判斷液化指標 9
2-4-1 超額孔隙水壓力比 9
2-4-2 軸向/剪應變 9
2-5 一維地盤反應分析程式DEEPSOIL 10
2-5-1 土壤非線性組成律(constitutive model) 10
2-5-2 孔隙水壓力生成模型 11
第三章 動態試驗 12
3-1 動態強度試驗規劃 12
3-2 試驗土樣 12
3-3 試驗設備 15
3-3-1 動態三軸試驗 15
3-3-2 反覆單剪試驗 21
3-4 動態三軸試驗程序 24
3-4-1 試體準備與製作 24
3-4-2 試體飽和 25
3-4-3 試體壓密 25
3-4-4 反覆載重 25
3-5 反覆單剪試驗程序 26
3-5-1 試體準備與製作 26
3-5-2 試體壓密 26
3-5-3 試體剪切 27
3-6 試驗結果與分析 27
3-6-1 動態三軸試驗 27
3-6-2 反覆單剪試驗 45
3-6-3 液化強度曲線之比較 63
3-7 動態性質試驗 69
第四章 離心機試驗之地盤受震反應分析結果 71
4-1 試驗規劃 71
4-2 分析結果 74
4-2-1 D-3d-S之分析結果 74
4-2-2 D-6d-S之分析結果 86
4-2-3 W-6d-S之分析結果 97
4-2-4 W-6d-H之分析結果 109
4-2-5 W-3d-S之分析結果 121
4-2-6 W-3d-H之分析結果 133
第五章 數值模擬與離心模型試驗之比較 145
5-1 數值模擬 145
5-1-1 DEEPSOIL線性分析之參數設定 145
5-1-2 DEEPSOIL非線性分析之參數設定 149
5-2 離心模型試驗與數值模擬結果與分析 159
5-2-1 D-6d-S 159
5-2-2 D-3d-S 171
5-2-3 W-6d-S 181
5-2-4 W-6d-H 192
第六章 結論與建議 199
參考文獻 201
參考文獻 [1] 李政鋼,「液化地盤離岸風機單樁基礎之離心模型試驗」,碩士論文,國立中央大學土木工程學系,桃園(2019)。
[2] 黃才羽,「評估土壤液化最佳地動強度量值」,碩士論文,國立中央大學土木工程學系,桃園(2021)。
[3] 張黃昇,「考慮土壤強度之非線性地盤反應分析」,碩士論文,國立中興大學土木工程學系,臺中(2017)。
[4] 高茂森,「土壤動態三軸試驗條件對液化潛能分析之影響」,碩士論文,國立成功大學土木工程學系,臺南(2004)。
[5] 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程學系,桃園(2004)。
[6] 楊予瑄,「土壤於二元組構理論下受振勁度折減之探討」,碩士論文,國立臺灣大學土木工程學系,臺北(2020)。
[7] 張暐承,「地盤反應與土壤液化之數值模擬研究」,碩士論文,國立臺灣大學土木工程學系,臺北(2014)。
[8] 郭毓真,「細粒料含量對麥寮砂動態行為之影響」,碩士論文,國立交通大學土木工程學系,新竹(2004)。
[9] 洪明琳,「以反覆單剪試驗探討含細粒料砂土其不同孔隙參數與液化強度之關係」,碩士論文,國立暨南國際大學土木工程學系,南投(2005)。
[10] Darendeli, M. B. (2001). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves, Department of Civil, Architectural and Environmental Engineering, The University of Texas, Austin, Texas.
[11] Duncan, James M., and Chin-Yung Chang, “Nonlinear analysis of stress and strain in soils.” Journal of the Soil Mechanics and Foundations Division, Vol. 96, No. SM5, pp 1629-1653 (1970).
[12] Finn, W. D., Pickering, D. J., and Bransby, P. L., “Sand liquefaction in triaxial and simple shear tests.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM4, pp. 639-659 (1971).
[13] Finn, W. D. L., Lee, K. L, and Martin, G. R., “An effective stress model for liquefaction.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, 517-533 (1977).
[14] Groholski, D. R., Hashash, Y. M. A., Kim, B. Musgrove, M. Harmon, J. and Stewart, J. P., “Simplified model for small-strain nonlinearity and strength in 1-D seismic site response analysis.” Journal of Geotechnical and Geoenvironmental Engineering., Vol.142, No.9, (2016).
[15] Hardin, B.O. and Richart F.E. Jr., “Elastic Wave Velocities in Granular Soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33∼65 (1963).
[16] Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Phillips, C. A. and Park, D., “DEEPSOIL 7.0, User Manual”.
[17] Hashash, Y. M. A., Dashti, S., Romero, M. I., Ghayoomi, M. and Musgrove, M. “Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments.” Soil Dynamics and Earthquake Engineering, Vol. 78, pp. 19-31, (2015).
[18] Hubler, J. F., Zekkos, A. A., and Zekkos, D., “Monotonic and cyclic simple shear response of gravel-sand mixtures.” Soil Dynamics and Earthquake Engineering, Vol.115, pp.291-304 (2018).
[19] Ishihara, K., Harada, K., Lee, W. F., Chan, C. C., and Safiullah, A. M. M., “Post-liquefaction settlement analyses based on the volume change characteristics of undisturbed and reconstituted samples.” Soils and Foundations, Vol. 56, pp.533-546 (2016).
[20] Idriss, I. M. and Seed, H. B., “Seismic response of horizontal soil layers.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031 (1968).
[21] Konder, R. L. and Zelasko, J. S., “A hyperbolic stress-strain formulation of sands.” Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brasil, pp. 289-324 (1963).
[22] Luque, R., and Bray, J. D., “Dynamic soil-structure interaction analyses of two important structures affected by liquefaction during the Canterbury earthquake sequence.” Soil Dynamics and Earthquake Engineering, Vol. 133 (2020).
[23] Matasovic, Neven, and Vucetic M., “Cyclic Characterization of Liquefiable Sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 119, No. 11, pp 1805-1822 (1993).
[24] Matasovic, Neven and Ordonez, Gustavo A., “D-MOD2000-A Computer Program for Seismic Site Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams and Solid Waste Landfills.” GeoMotions, LLC; Lacey, Washington, United States of America (2012).
[25] Nong, Z.Z., Park, S.S., and Lee, D.E., “Comparison of sand liquefaction in cyclic triaxial and simple shear tests.” Soils and Foundations, Vol. 61, pp. 1071-1085 (2021).
[26] Numanoglu, O. A., Musgrove, M., Harmon, J. A., & Hashash, Y. M. A., “Generalized Non-Masing Hysteresis Model for Cyclic Loading.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 144 (2017).
[27] Park D., Ahn, J. K., “Accumulated Stress Based Model for Prediction of Residual Pore Pressure,” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp 1567-1570 (2013).
[28] Park, D., and Hashash, Y. M. A., “Soil damping formulation in nonlinear time domain site response analysis.” Journal of Earthquake Engineering, Vol. 8, No. 2, pp 249-274 (2004).
[29] Seed, H. B., and Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No. SM6, pp. 105-134 (1966).
[30] Seed, H. B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255 (1979).
[31] Son, S. W., Ko, M. J., and Kim, J. M., “Cyclic shear behavior characteristics of marine silty sand.” Journal of Marine Science and Technology, Vol. 25, No.6, pp. 784-790 (2017).
[32] Tasiopoulou, P., Giannakou, A., Chacko, J., and Wit, S.D., “Liquefaction triggering and post-liquefaction deformation of laminated deposits.” Soil Dynamics and Earthquake Engineering, Vol. 124, pp. 330-344 (2019).
[33] Toki, S., Tatsuoka, F., Miura, S., Yoshimi, Y., Yasuda, S., Makihara, Y., “Cyclic undrained triaxial strength of sand by a cooperative test program.” Soils and Foundations, Vol. 26, pp. 117-128 (1986).
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2022-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明