參考文獻 |
[1] 李政鋼,「液化地盤離岸風機單樁基礎之離心模型試驗」,碩士論文,國立中央大學土木工程學系,桃園(2019)。
[2] 黃才羽,「評估土壤液化最佳地動強度量值」,碩士論文,國立中央大學土木工程學系,桃園(2021)。
[3] 張黃昇,「考慮土壤強度之非線性地盤反應分析」,碩士論文,國立中興大學土木工程學系,臺中(2017)。
[4] 高茂森,「土壤動態三軸試驗條件對液化潛能分析之影響」,碩士論文,國立成功大學土木工程學系,臺南(2004)。
[5] 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程學系,桃園(2004)。
[6] 楊予瑄,「土壤於二元組構理論下受振勁度折減之探討」,碩士論文,國立臺灣大學土木工程學系,臺北(2020)。
[7] 張暐承,「地盤反應與土壤液化之數值模擬研究」,碩士論文,國立臺灣大學土木工程學系,臺北(2014)。
[8] 郭毓真,「細粒料含量對麥寮砂動態行為之影響」,碩士論文,國立交通大學土木工程學系,新竹(2004)。
[9] 洪明琳,「以反覆單剪試驗探討含細粒料砂土其不同孔隙參數與液化強度之關係」,碩士論文,國立暨南國際大學土木工程學系,南投(2005)。
[10] Darendeli, M. B. (2001). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves, Department of Civil, Architectural and Environmental Engineering, The University of Texas, Austin, Texas.
[11] Duncan, James M., and Chin-Yung Chang, “Nonlinear analysis of stress and strain in soils.” Journal of the Soil Mechanics and Foundations Division, Vol. 96, No. SM5, pp 1629-1653 (1970).
[12] Finn, W. D., Pickering, D. J., and Bransby, P. L., “Sand liquefaction in triaxial and simple shear tests.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM4, pp. 639-659 (1971).
[13] Finn, W. D. L., Lee, K. L, and Martin, G. R., “An effective stress model for liquefaction.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, 517-533 (1977).
[14] Groholski, D. R., Hashash, Y. M. A., Kim, B. Musgrove, M. Harmon, J. and Stewart, J. P., “Simplified model for small-strain nonlinearity and strength in 1-D seismic site response analysis.” Journal of Geotechnical and Geoenvironmental Engineering., Vol.142, No.9, (2016).
[15] Hardin, B.O. and Richart F.E. Jr., “Elastic Wave Velocities in Granular Soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33∼65 (1963).
[16] Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Phillips, C. A. and Park, D., “DEEPSOIL 7.0, User Manual”.
[17] Hashash, Y. M. A., Dashti, S., Romero, M. I., Ghayoomi, M. and Musgrove, M. “Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments.” Soil Dynamics and Earthquake Engineering, Vol. 78, pp. 19-31, (2015).
[18] Hubler, J. F., Zekkos, A. A., and Zekkos, D., “Monotonic and cyclic simple shear response of gravel-sand mixtures.” Soil Dynamics and Earthquake Engineering, Vol.115, pp.291-304 (2018).
[19] Ishihara, K., Harada, K., Lee, W. F., Chan, C. C., and Safiullah, A. M. M., “Post-liquefaction settlement analyses based on the volume change characteristics of undisturbed and reconstituted samples.” Soils and Foundations, Vol. 56, pp.533-546 (2016).
[20] Idriss, I. M. and Seed, H. B., “Seismic response of horizontal soil layers.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031 (1968).
[21] Konder, R. L. and Zelasko, J. S., “A hyperbolic stress-strain formulation of sands.” Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brasil, pp. 289-324 (1963).
[22] Luque, R., and Bray, J. D., “Dynamic soil-structure interaction analyses of two important structures affected by liquefaction during the Canterbury earthquake sequence.” Soil Dynamics and Earthquake Engineering, Vol. 133 (2020).
[23] Matasovic, Neven, and Vucetic M., “Cyclic Characterization of Liquefiable Sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 119, No. 11, pp 1805-1822 (1993).
[24] Matasovic, Neven and Ordonez, Gustavo A., “D-MOD2000-A Computer Program for Seismic Site Response Analysis of Horizontally Layered Soil Deposits, Earthfill Dams and Solid Waste Landfills.” GeoMotions, LLC; Lacey, Washington, United States of America (2012).
[25] Nong, Z.Z., Park, S.S., and Lee, D.E., “Comparison of sand liquefaction in cyclic triaxial and simple shear tests.” Soils and Foundations, Vol. 61, pp. 1071-1085 (2021).
[26] Numanoglu, O. A., Musgrove, M., Harmon, J. A., & Hashash, Y. M. A., “Generalized Non-Masing Hysteresis Model for Cyclic Loading.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 144 (2017).
[27] Park D., Ahn, J. K., “Accumulated Stress Based Model for Prediction of Residual Pore Pressure,” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp 1567-1570 (2013).
[28] Park, D., and Hashash, Y. M. A., “Soil damping formulation in nonlinear time domain site response analysis.” Journal of Earthquake Engineering, Vol. 8, No. 2, pp 249-274 (2004).
[29] Seed, H. B., and Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No. SM6, pp. 105-134 (1966).
[30] Seed, H. B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255 (1979).
[31] Son, S. W., Ko, M. J., and Kim, J. M., “Cyclic shear behavior characteristics of marine silty sand.” Journal of Marine Science and Technology, Vol. 25, No.6, pp. 784-790 (2017).
[32] Tasiopoulou, P., Giannakou, A., Chacko, J., and Wit, S.D., “Liquefaction triggering and post-liquefaction deformation of laminated deposits.” Soil Dynamics and Earthquake Engineering, Vol. 124, pp. 330-344 (2019).
[33] Toki, S., Tatsuoka, F., Miura, S., Yoshimi, Y., Yasuda, S., Makihara, Y., “Cyclic undrained triaxial strength of sand by a cooperative test program.” Soils and Foundations, Vol. 26, pp. 117-128 (1986). |