參考文獻 |
[1] A. A. Abdul-Wahab, “Lyapunov bounds for root clustering in the presence of system uncertainty,” International Journal of Systems Science, vol. 21, no. 12, pp. 2603-2611, 1990.
[2] W. T. Baumann and W. J. Rugh, “Feedback control of nonlinear systems by extended linearization,” IEEE Transaction on Automatic Control, vol. 31, no. 1, pp. 40-46, 1986.
[3] A. Bhaya, E. Kaszkurewicz, “On discrete-time diagonal and D-stability,” Linear Algebra and its Applications, vol. 187, pp. 87-104, 1993.
[4] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Philadelphia, 1994.
[5] J. P. Boyle and R. L. Dysktra, “A method for finding projections on to the intersection of convex sets in Hibert space,” Advances in Order Restricted Statistical Inference, pp. 28-43. Lecture Notes in statistics, vol. 37, Springer-Verlag, Berlin, 1986.
[6] S. G. Cao, N. W. Rees and G. Feng, “ Stability analysis and design for a class of continuous-time fuzzy control systems,” International Journal of Control, vol. 64, no. 6, pp. 1069-1087, 1996.
[7] J. Y. Chen and C. C. Wong, “Implementation of the Takagi-Sugeno model-based fuzzy control using an adaptive gain controller,” IEE Proc.-Control Theory Appl., vol. 147, no. 5, pp. 509-514, 2000.
[8] W. Cheney, and A. A. Goldstein, “Proximity maps for convex sets,” Am. Math. Soc., vol. 12, pp. 448-450, 1959.
[9] M. Chilali and P. Gahinet, “ design with pole placement constraints: an LMI approach,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 358-367, 1996.
[10] M. Chilali, P. Gahinet and P. Apkarian, “Robust pole placement in LMI regions,” IEEE Transactions on Automatic Control, vol. 44, no. 12, pp. 2257-2270, 1999.
[11] J. H. Chou, “Improved measures of stability-robustness for linear discrete systems with structured uncertainties,” Control-Theory and Advanced Technology, vol. 10, no. 4, pp. 1169-1180, 1995.
[12] F. Cuesta, F. Gordillo, J. Aracil and A. Ollero, “Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems,” IEEE Transactions on Fuzzy systems, vol. 7, no. 5, pp. 505-520, 1999.
[13] J. Douglas and M. Athans, “Robust linear quadratic designs with real parameter uncertainty,” IEEE Transactions on Automatic Control, vol. 39, pp.107-111, 1994.
[14] G. Feng, S. G. Cao, N. W. Rees and C. K. Chak, “Design of fuzzy control systems with guaranteed stability,” Fuzzy Sets and Systems, pp. 1-10, 1997.
[15] Y. K. Foo and Y. C. Soh, “Stability analysis of a family of matrices,” IEEE Transactions on Automatic Control, vol. 35, no. 11, pp. 1257-1259, 1990.
[16] K. Furuta and S. B. Kim, “Pole assignment in a specified disk,” IEEE Transactions on Automatic Control, vol. 32, no. 5, pp. 423-427, 1987.
[17] P. Gahinet, A. Nemirovski and A. J. Laub, LMI control toolbox user’s guide, Natick, Ma: The MATHWORKS Inc., 1995.
[18] G. Garcia and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 184-190, 1995.
[19] J. C. Geromel, “On the determination of a diagonal solution of the Lyapunov equation,” IEEE Transactions on Automatic Control, vol. 30, no. 4, pp. 404-406, 1985.
[20] J. C. Geromel, M. C. de Oliverira and L. Hsu, “LMI characterization of structural and robust stability,” Linear Algebra and its Applications, vol. 285, pp. 69-80, 1998.
[21] K. M. Grigoriadis and R. E. skeleton, “Alternating convex projection methods for covariance control design,” International Journal of Control, vol. 60, pp. 1083-1106, 1992.
[22] K. M. Grigoriadis and R. E. Skelton, “Low-order control design for LMI problems using Alternating projection methods,” Automatica, vol.32, no. 8, pp. 1117-1125, 1996.
[23] L. G. Gubin, B. T. Polyak and E.V. Raik, “The method of projections for finding the common point of convex sets,” USSR comp. Math. Phys., vol. 7, pp. 1-24, 1967.
[24] T. M. Guerra and L. Vermeiren, “Control laws for Takagi-Sugeno fuzzy models,” Fuzzy Sets and Systems, vol. 120, pp. 95-108, 2001.
[25] J. Hauser, S. S. Sastry and P. Kokotovic, “Nonlinear control via approximate input-output linearization: the ball and beam example,” IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 392-398, 1992.
[26] N. J. Higham, “Computing the nearest symmetric positive semidefinite matrix,” Linear Algebra Applications, vol. 103, pp. 103-118, 1988.
[27] S. N. Huang, J. X. Qian and H. H. Shao, ”Robustness bounds for continuous systems with LQ regulators,” IEE Proceeding, 1995.
[28] S. N. Huang and W. Ren, “New results on the robust bounds of linear uncertain systems,” International Journal of Systems Science, vol. 28, no. 2, pp. 141-144, 1997.
[29] J. Joh, Y. H. Chen and R. Langari, “On the stability issues of linear Takagi-Sugeno fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 402-410, 1998.
[30] Y. T. Juang, T. S. Kuo and C. F. Hsu, “New approach to time-domain analysis for stability robustness of dynamic systems,” International Journal of Systems Science, vol. 18, pp. 1363-1376, 1987.
[31] Y. T. Juang, Z. C. Hong and Y. T. Wang, “Robustness of pole assignment in a specified region,” IEEE Transactions on Automatic Control, vol. 34, no.7, pp.758-760, 1989.
[32] Y. T. Juang, Z. C. Hong and Y. T. Wang, “Pole-assignment for uncertain systems with structured perturbations,” IEEE Transactions on Circuits and Systems, vol. 37, no. 1, pp.107-110, 1990.
[33] Y. T. Juang, “Robust stability and robust pole assignment of linear systems with structured uncertainty,” IEEE Transactions on Automatic Control, vol. 36, pp. 635-637, 1991.
[34] E. Kazhurewicz and L. Hsu, “A note on the absolute stability of nonlinear discrete time systems,” International Journal of Control, vol. 40, pp. 867-869, 1984.
[35] L. H. Keel, S. P. Bhattacharyya and JO-W. Howze, “Robust control with structured perturbations”, IEEE Transactions on Automatic Control, vol. 33, pp. 68-78, 1988.
[36] K. Kiriakidis, A. Grivas and A. Tzes, “Quadratic stability analysis of the Takagi-Sugeno fuzzy model,” Fuzzy Sets and Systems, vol. 98, pp. 1-14, 1998.
[37] K. Kiriakidis, “ Non-linear control system design via fuzzy modeling and LMIs,” International Journal of Control, vol. 72, pp. 676-685, 1999.
[38] A. Knadel, Y. Luo and Y. Q. Zhang, “Stability analysis of fuzzy control systems,” Fuzzy Sets and Systems, vol. 105, pp. 33-48, 1999.
[39] M. A. Leal and J. S. Gibson, “A first-order lyapunov robustness method for linear systems with uncertain parameters,” IEEE Transactions on Automatic Control, vol. 35, pp. 1068-1070, 1990.
[40] C. H. Lee, “Upper and lower matrix bounds of the solutions for continuous and discrete Lyapunov equation,” Franklin Institute, vol. 334B, no. 4, pp. 539-546, 1997.
[41] J. C. Lee, E. A. Misawa and K. N. Reid, “Asymmetric robustness measure of eigenvalue distribution for uncertain linear system with structured perturbation,” Proceedings of the American Control conference (AACC), pp. 3950-3954, 1997.
[42] T. T. Lee and S. H. Lee, ”Discrete optimal control with eigenvalue assigned inside a circular region,” IEEE Transactions on Automatic Control, vol. AC-31, no. 10, pp. 958-962, 1986.
[43] D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1968.
[44] Leh Luoh, “New stability analysis of T-S fuzzy system with robust approach,” Mathematics and Computers in Simulation, vol. 59, pp. 335-340, 2002.
[45] X. J. Ma, Z. Q. Sun and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 1, pp. 41-51, 1998.
[46] C. Marsh and H. Wei, “Robustness bounds for systems with parametric uncertainty,” Automatica, vol. 32, pp. 1447-1453, 1996.
[47] T. Mori, “Estimates for a measure of stability robustness via a Lyapunov matrix equation,” International Journal of Control, no. 3, pp. 921-927, 1989.
[48] T. Mori, Y. Mori and H. Kokame, “Common Lyapunov function approach to matrix root clustering,” Systems and Control Letters, vol. 44, pp. 73-78, 2001.
[49] Y. Nesterov and A. Nemirovsky, “Interior-point polynomial methods in convex programming,” SIAM. Philadelphia, PA, 1994.
[50] A. T. Neto, J. M. Dion and L. Dugard, “ Robustness bounds for LQ regulators,” IEEE Transactions on Automatic Control, vol. 37, pp. 1373-1377, 1992.
[51] A. Ollero, J. Aracil and A. Garcia-Cerezo, “Robust design of rule-based fuzzy controllers,” Fuzzy Sets and Systems, vol. 70, pp. 249-273, 1995.
[52] M. C. de Oliveira, J. C. Geromel and L. Hsu, “LMI characterization of structural and robust stability: the discrete-time case,” Linear Algebra and its Applications, vol. 296, pp. 27-38, 1999.
[53] C. W. Park, H. J. Kang, Y. H. Yee and M. Park, “ Numerical robust stability analysis of fuzzy feedback linearisation regulator based on linear matrix inequality approach,” IEE Proc.-Control Theory Appl., vol. 149, no.1, pp. 82-88, 2001.
[54] A. Rachid, “Robustness of pole assignment in a specified region for perturbed systems,” International Journal of Systems Science, vol. 21, no. 3, pp. 579-585, 1990.
[55] C. W. Ramos, L. D. Peres, “An LMI approach to compute robust stability domains for uncertain linear systems,” AACC, pp. 4073-4078, 2001.
[56] C. W. Ramos, L. D. Peres, “An LMI condition for the robust stability of uncertain continuous-time linear systems,” IEEE Transactions on Automatic Control, vol. 47, no. 4, pp. 675-678, 2002.
[57] M. E. Sezer and D. D. Siljak, A note on robust stability bounds, IEEE Transactions on Automatic Control, vol. 34, pp. 1212-1215, 1989.
[58] K. C. Sio and C. K. Lee, “Stability of fuzzy PID controllers,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 28, no. 4, pp. 490-495, 1998.
[59] J.-J. E. Slotine and I. L. Weiping, Applied Nonlinear Control, Prentice-Hall, 1991.
[60] K. M. Sobel, S. S. Banda and J. H. Yeh, “Robust control for linear systems with structured state space uncertainty,” International Journal of Control, vol. 50, pp. 1991-2004, 1989.
[61] M. K. Solak and A. C. Peng, “A note on robust pole placement,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 181-184, 1995.
[62] J. H. Su and I. K. Fong, “Robust stability analysis of linear continuous / discrete-time systems with output feedback controllers,” IEEE Transactions on Automatic Control, vol. 38, no. 7, pp. 1154-1158, 1993.
[63] K. Takagi and M. Sugeno, “ Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics vol. 15, pp. 116-132, 1985.
[64] K. Tanaka and M. Sugeno, “Stability analysis of fuzzy systems using Lyapunov’s direct method,” in Proc. NAFIPS’ 90, pp. 133-136. 1990.
[65] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135-156, 1992.
[66] K. Tanaka and M. Sano, “ A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer,” IEEE Transactions on Fuzzy Systems, vol. 2, no. 2, pp. 119-134, 1994.
[67] K. Tanaka, T. Ikeda and H. O. Wang, “Fuzzy regulators and Fuzzy observers: Relaxed stability conditions and LMI-base Designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250-265, 1998.
[68] H. O. Wang, K. Tanaka and M. F. Griffin, “An approach to fuzzy control of Nonlinear systems: Stability and Design Issues,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996.
[69] C. A. Weber and J. P. Allebach, “Reconstruction of frequency-offset Fourier data by alternation projection onto constraint sets,” Proc. 24th Allerton Conf. On Communication, Control and Computing, Urbana Champaign, IL, pp. 194-201, 1986.
[70] L. K. Wong, F. H. F. Leung and P. K. S. Tam, “Fuzzy model-based controller for inverted pendulum,” Electronics Letters, vol. 32, no. 18, pp. 1683-1685, 1996.
[71] R. K. Yedavalli, “Improved measures of stability robustness for linear state space models,” IEEE Transactions on Automatic Control, vol. 30, pp. 577-579, 1985.
[72] R. K. Yedavalli and Z. Liang, “Reduced conservatism in stability robustness bounds by state transformation,” IEEE Transactions on Automatic Control, vol. 31, pp. 863-866, 1986.
[73] D. C. Youla and H. Webb, “Image restoration by the method of convex projections: Part 1-Theory,” IEEE Transactions on Medical image, vol. 1, pp. 81-94, 1982.
[74] J. M. Zhang, R. H. Li and P. A. Zhang, “Stability analysis and systematic design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 120, pp. 65-72, 2001.
[75] K. Zhou and P. P. Khargonekar, “Stability robustness bounds for linear state-space models with structured uncertainty,” IEEE Transactions on Automatic Control, vol. 32, pp. 621-623, 1987. |