以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:50 、訪客IP:18.189.143.236
姓名 張淇閎(Chi-Hung Chang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究針對被動式調諧質量阻尼器(Tuned Mass Damper, TMD),以主動控制理論,提出最佳化設計方法,進行數值模擬分析,驗證此設計方法可通用於單自由度與多自由度結構,且不限於無阻尼或有阻尼結構,當結構遭受外力為風力或地震力時皆可適用。將運動方程式中之TMD設計參數移項配置,轉換TMD之回復力與阻尼力為控制力,使TMD最佳化參數設計問題,變為增益矩陣最佳化問題,並利用主動控制理論之直接輸出回饋方法,求解最佳增益矩陣。然而,設計出之最佳增益矩陣並非即為最佳TMD參數,無法一次求解出最佳TMD參數。對此,本研究進一步提出參數更新迭代之方法,將直接輸出回饋求得之最佳增益矩陣進行參數更新迭代,如此即可完成最佳TMD設計。不僅如此,針對不同減振需求之TMD設計目標,僅需選擇不同之輸出向量,組合出對應之權重矩陣求解即可,如此設計流程,既能應對不同減振需求之TMD設計問題,求解過程也十分直觀簡便。除此之外,本研究也將多元調諧質量阻尼器(Multiple Tuned Mass Dampers, MTMDs)最佳參數設計問題轉換為多個控制力輸入問題,再利用重新推導之多輸入控制力直接輸出回饋方法,同時求解多組增益矩陣,使MTMDs也能適用於本研究所提之設計方法。經由數值模擬,所求出之TMD最佳設計參數,可與隨機振動理論下之解析解相等,並優於近似解,驗證所提之設計方法之可行性。將分析結構擴展為多自由度,也確認可直接進行設計,使TMD設計能更接近真實情況。針對MTMDs設計,本研究之設計結果亦能使系統之均方反應能夠同等或優於參考文獻之MTMDs設計結果。 摘要(英) In this study, an optimal design method of passive tuned mass damper (TMD) based on active control theory is proposed. The numerical simulation analysis verifies that the design method can be applied to single-degree-of-freedom (SDOF) or multi-degree-of-freedom (MDOF) structures. Either undamped or damped structures are applicable. The proposed method also can be applied when the structure is subjected to external force such as wind forces or earthquake forces. In the equation of motion, the partial TMD parameters are shifted to the control term. Therefore, the restoring force and damping force of TMD are transformed into the control force. The optimization of TMD parameters design problem is therefore transformed into the gain matrix optimization problem. And the direct output feedback algorithm is used to solve the optimal gain matrix. However, the gain matrix obtained by solving direct output feedback algorithm is a conditional weight balanced optimal solution of system response and control force. The obtained gain matrix is not just the optimal TMD parameters which can minimize the mean square response of the main structure. In this regard, the present study further proposes a parameter updating iterative procedure. The optimal gain matrix obtained by solving direct output feedback is used for parameter updating iteration, so that the optimal TMD design parameters can be obtained. The proposed TMD optimization design method is a general method for different structures. For the reduction objective of various structural vibrations, the proposed method only requires to select the corresponding output matrices to cast the weighting matrix and quadratic initial condition matrix for computation. Such a design process can deal with the TMD design problems with different vibration reduction requirements intuitively and simply. In addition, this study also transforms the optimal parameters design problem of Multiple Tuned Mass Dampers (MTMDs) into multiple control force input problems. And the re-derived multi-input control force direct output feedback algorithm is used to solve multiple gain matrices. Therefore, the design of MTMDs can also be applied by the proposed method in this study. After numerical simulation results verification, the obtained optimal design parameters of the passive TMD are found to be equal to the analytic solution obtained by random vibration theory. Moreover, the obtained optimal TMD parameters are even better than the approximate solution. The verification results confirm that the proposed design method is accurate and feasible. Furthermore, expanding the analysis structure to the MDOF structure also confirms that the proposed design method can be carried out directly. So the TMD design can be much suitable for the real application. For the design of MTMDs, the verification results also show that the mean square response of the system is better than the design results of the MTMDs in the reference. 關鍵字(中) ★ 被動式調諧質量阻尼器
★ 多元調諧質量阻尼器
★ 直接輸出回饋
★ 參數更新迭代
★ 最佳化設計
★ 均方反應最小化
★ 風力
★ 地震力關鍵字(英) ★ passive tuned mass damper
★ multiple tuned mass dampers
★ direct output feedback algorithm
★ parameter updating iterative procedure
★ mean square response minimization
★ H2 norm minimization
★ wind force
★ earthquake force論文目次 摘要 i
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xiii
符號說明 xv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 4
第二章 被動式調諧質量阻尼器之推導與設計流程 7
2-1 多自由度結構加裝單一調諧質量阻尼器 7
2-1-1 運動方程式 7
2-1-2 單一輸入控制力回饋之控制律 10
2-1-3 多輸入控制力回饋之控制律 12
2-2 多自由度結構加裝多元調諧質量阻尼器 14
2-2-1 運動方程式 15
2-2-2 控制律之增益矩陣推導 17
2-3 最佳增益矩陣設計 19
2-3-1 單一輸入控制力回饋最佳設計 20
2-3-2 多輸入控制力回饋最佳設計 22
2-3-3 各最佳化目標所對應之輸出向量 26
2-4 最佳參數設計流程 28
2-4-1 單一TMD最佳設計流程 29
2-4-2 MTMDs最佳設計流程 30
第三章 結構加裝單一TMD之數值模擬及驗證 41
3-1 數值模擬之結構參數 41
3-2 頻率反應函數 41
3-3 單自由度結構加裝單一TMD之數值模擬及驗證 44
3-3-1 風力下結構位移最小化 46
3-3-2 風力下結構速度最小化 47
3-3-3 風力下結構加速度最小化 48
3-3-4 地震力下結構位移最小化 50
3-3-5 地震力下結構速度及結構絕對加速度最小化 52
3-3-6 考量TMD衝程限制之結構反應最小化 53
3-4 多自由度結構加裝單一TMD之數值模擬 54
3-4-1 風力下結構頂樓位移最小化 56
3-4-2 風力下結構頂樓加速度最小化 57
3-4-3 地震力下結構頂樓位移最小化 58
3-4-4 地震力下結構頂樓絕對加速度最小化 58
3-5 考量TMD回復力與阻尼力作用於結構不同位置 59
3-5-1 風力下多自由度結構加裝回復力與阻尼力作用不同位置之TMD 61
3-5-2 地震力下多自由度結構加裝回復力與阻尼力作用不同位置之TMD 62
第四章 結構加裝MTMDs之數值模擬及驗證 91
4-1 單自由度結構加裝MTMDs之數值模擬及驗證 91
4-1-1 風力下單自由度結構加裝MTMDs 92
4-1-2 地震力下單自由度結構加裝MTMDs 95
4-1-3 單自由度結構加裝MTMDs之參數分析 97
4-2 多自由度結構加裝MTMDs之數值模擬 98
4-2-1 風力下多自由度結構加裝MTMDs 100
4-2-2 地震力下多自由度結構MTMDs 101
第五章 結論與建議 123
5-1 結論 123
5-2 建議 126
參考文獻 129
附錄A 133
附錄B 135
附錄C 137
附錄D 139參考文獻 [1] 內政部營建署,「建築物耐風設計規範及解說」,內政部營建署台內營字第1030813291號令,2014年11月。
[2] 內政部營建署,「建築物耐震設計規範及解說」,內政部營建署台內營字第0990810250號令,2011年1月。
[3] Frahm H., “Device for damping vibration of bodies”, U. S. Patent No. 989,958, 1911.
[4] Den Hartog, J.P., Mechanical Vibrations, 4th Edition, New York, McGraw-Hill, 1956.
[5] Tsai H.C., and Lin G.C., “Optimum tuned-mass dampers for minimizing steady- state response of support-excited and damped systems”, Earthquake Engineering and Structural Dynamics, 10, 1993, pp. 957-973.
[6] Warburton G. B., and Ayorinde E. O., “Optimum absorber parameters for simple system”, Earthquake Engineering and Structural Dynamics, 8, 1980, pp. 197-217.
[7] Warburton G. B., “Optimum absorber parameters for minimizing vibration response”, Earthquake Engineering and Structural Dynamics, 9, 1981, pp. 251-262.
[8] Warburton G. B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10, 1982, pp.381-401.
[9] Korenev B. G., and Reznikov L. M., Dynamic Vibration Absorbers, New York, Wiley, 1993.
[10] Bakre S. V., and Jangid R. S., “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14, 2007, pp. 448-470.
[11] Tigli O. F., “Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads”, Journal of Sound and Vibration, 331, 2012, pp.3035-3049.
[12] 鍾立來、吳賴雲、賴勇安、連冠華、黃旭輝:〈以結構位移均方最小化作調諧質塊阻尼器之最佳設計〉,《結構工程》,第二十六卷,第四期,民國100年12月,31-58頁。
[13] Iwanami K., and Seto K., “An optimum design method for the dual dynamic damper and its effectiveness”, Bulletin of JSME, 27, 231, 1984, pp. 1965-1973.
[14] Xu K., and Igusa T., “Dynamic characteristics of multiple substructures with closely spaced frequencies”, Earthquake Engineering and Structural Dynamics, 21, 1992, pp. 1059-1070.
[15] Xu K., and Igusa T., “Vibration control using multiple tuned mass dampers”, Journal of Sound and Vibration, 175, 4, 1994, pp. 491-503.
[16] Joshi A. S., and Jangid R. S., “Optimum parameters of multiple tuned mass dampers for base-excited damped systems”, Journal of Sound and Vibration, 202, 5, 1997, pp. 657-667.
[17] Jangid R. S., “Optimum multiple tuned mass dampers for base-excited undamped system”, Earthquake Engineering and Structural Dynamics, 28, 1999, pp. 1041-1049.
[18] Bakre S. V., and Jangid R. S., “Optimum multiple tuned mass dampers for mase-excited damped main system”, International Journal of Structural Stability and Dynamics, 4, 4, 2004, pp. 527-542.
[19] Bandivadekar T. P., and Jangid R. S., “Optimization of multiple tuned mass dampers for vibration control of system under external excitation”, Journal of Vibration and Control, 19, 12, 2012, pp. 1854-1874.
[20] Soong T. T., and Manolis G. D., “Active structure”, Journal of Structure Engineering, 113, 1987, pp.3035-3049.
[21] Chung L. L., Reinhorn A. M., and Soong T. T., “Experiments on active control of seismic structures”, Journal of Engineering Mechanics, 114, 1988, pp.241-256.
[22] Spencer B. F. Jr., and Sain M. K., “Control buildings a new frontier in feedback”, IEEE Control Systems Magazine, 17, 6, 1997, pp. 19-35.
[23] Doyle J. C., Glover K., Khargonekar P. P., and Francis B. A., “State-space solutions to standard H2 and H∞ control problem”, IEEE Transactions on Automatic control, 34, 8, 1989, pp. 831-847.
[24] Spencer B. F., Jr., and Sain M. K., “Frequency domain optimal control strategies for aseismic protection”, Journal of Engineering Mechanics, 120, 1994, pp, 135-158.
[25] Dyke S. J., Spencer B. F. Jr., Quast P., Kaspari D. C. Jr., and Sain M. K., “Implementation of an active mass driver using acceleration feedback control”, Microcomputers in Civil Engineering, 11, 1996, pp. 305-323.
[26] Zuo L., Optimal control with structure constraints and its application to the design of passive mechanical systems, Massachusetts, Massachusetts Institute of Techology, 2002.
[27] Zuo L., and Nayfeh S. A., “Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems”, Journal of Vibration and Acoustics, 127, 2005, pp. 77-83.
[28] Zuo L., and Nayfeh S. A., “Structured H2 optimiztion of vehicle suspensions based on multi-wheel models”, Vehicle System Dynamics, 40, 5, 2003, pp. 351-371.
[29] Chang C. M., Shia S., and Yang C. Y., “Use of active control algorithm for optimal design of base-isolated buildings against earthquakes”, Structural and Multidisciplinary Optimization, 58, 2018, pp. 613-626.
[30] Chang C. M., Shia S., and Lai Y. A., “Seismic design of passive tuned mass damper parameters using active control algorithm”, Journal of Sound and Vibration, 426, 2018, pp. 150-165.
[31] Kareem A., Kijewski T., and Tamura Y., “Mitigation of motions of tall buildings with specific examples of recent applications”, Wind and Structures, 2, 3, 1999, pp. 201-251.
[32] Gutierrez Soto M., and Adeli H., “Tuned Mass Dampers”, Archives of Conputational Methods in Engineering, 20, 2013, pp. 419-431.
[33] Soong T. T., and Dargush G. F., Passive Energy Dissipation Systems in Structural Engineering, New York, Wiley, 1997.
[34] Connor J. J., Introduction to Structural Motion Control, New Jersey, Prentice Hall, 2007.
[35] Chopra A. K., Dynamics of Structures, Fourth Edition, Boston, Prentice Hall, 2012.
[36] Lin C.-C., Wang J.-F., and Ueng J.-M., “Vibration control identification of seismically excited m.d.o.f. structure-ptmd systems”, Journal of Sound and Vibration, 240, 1, 2001, pp. 87-115.指導教授 賴勇安(Yong-An Lai) 審核日期 2022-8-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare