博碩士論文 109621003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.224.69.179
姓名 劉佳怡(Chia-Yi Liu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用 Himawari-8 AHI 觀測資料結合深度神經網絡估計大氣總可降水量
(Estimation of Total Precipitable Water using Deep Neural Network Technique from Himawari-8 AHI Observation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 水氣為大氣中重要的氣體之一,它可能影響降雨、劇烈天氣、水文循環和氣候變化等。然水氣具有在時空維度上快速變化的特點,因此,大範圍連續性的時間與空間觀測對於其變化的守視監測是非常重要的。因此利用地球同步氣象衛星所酬載之先進成像儀的發展,可穩定提供監測大氣環境的高時空解析度的資料。面對大量非線性的衛星觀測資料,為了在有效時間內進行水氣的估算,我們需要一種快速演算法來實現這一目標。因此本研究將嘗試以Himawari-8/Advanced Himawari Imager (AHI)資料結合深度神經網絡(DNN)構建TPW反演推估模型,並使用RAOB、SNPP-CrIS/ATMS、Passive Microwave Radiometer 和ground-based GNSS等觀測料確認其模型的可靠性。
研究的初步結果顯示,DNN-based H8/AHI估算的水氣與積分RAOB各層的水氣得到的TPW相比,具有良好的相關係數和較低的RMSE (分別為0.89 and 5.82 mm)。與SNPP-CrIS/ATMS L2 TPW資料相比,其0.846 的相關係數和RMSE 4.663 mm 也表明對於擁有微波觀測頻道所反演出的TPW有著一致性。在輸入變量因子之重要性的分析中,發現地表壓力、波長13.3μm的亮溫和緯度等資訊,對於TPW的推估具有較大的正面影響。此外,我們通過使用Passive Microwave Radiometer和ground-based GNSS觀測進行的分析中顯示,H8/AHI TPW的趨勢與Passive Microwave Radiometer在時序上的趨勢是相近平行的,並且與ground-based GNSS TPW相比具有不錯的相關係數 (0.656)。這顯示本研究所開發的DNN-based H8/AHI TPW反演推估模型,可具有在時序上連續反演的能力。
摘要(英) Water vapor is one of the most important constituents of the atmosphere. It might affect rainfall, severe weather, hydrological cycle and climate change. How-ever, water vapor has the characteristics that is changing rapidly in space-time dimension. Therefore, the monitoring of the change, we need the observation in large spatial and continuous in time domains. In recent years, with the advent of imaging instrument onboard geostationary satellites, which have ability to monitor atmos-pheric conditions with high spatiotemporal resolution, the high-quality full disk data have become available.
In order to retrieve the total precipitable water (TPW) using the large number of nonlinear satellite data and be processed in an efficient time, we need a quick algo-rithm to achieve this goal. This study uses Himawari-8/Advanced Himawari Imager (AHI) data combined with Deep Neural Network (DNN) to build the TPW model, and uses the RAOB, SNPP-CrIS/ATMS, passive microwave radiometer and ground-based GNSS observation data to con-firm the reliability of this model. Pre-liminary results show the TPW which estimated by DNN-based H8/AHI have good correlation coefficients and low RMSE against TPW from integration of RAOB ob-servation in 0.89 and 5.82 mm, respectively. It also performs well in correlation co-efficient of 0.846 and RMSE of 4.663 mm when compared to SNPP-CrIS/ATMS data. In Variable Importance analysis, it is found that surface pressure, Tb16 (13.3μm) and latitude have larger positive impacts on the TPW estimation. Additional comparison had been conducted by using ground-based passive microwave radiometer and ground-based GNSS observation. The results show the tendency is in parallel in time with passive microwave radiometer and DNN-based H8/AHI has a higher correlation coefficient (0.656) compared with ground-based GNSS TPW. This suggests that DNN-based H8/AHI TPW model has the capability to retrieve TPW in time domain continuously. In conclusion, the developed DNN-based H8/AHI TPW model has good performance to estimate atmospheric water vapor information, and could pro-vide an alternative choice to supply timely information of precipitable water.
關鍵字(中) ★ 總可降水量 (TPW)
★ 深度神經學習 (DNN)
關鍵字(英) ★ Total Precipitable Water (TPW)
★ Deep Neural Network (DNN)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
List of Figures viii
List of Tables xiii
Chapter 1 Introduction and Objectives 1
1.1 Introduction 1
1.1.1 Approaches of Retrieval TPW with Satellite Infrared Channels 2
1.2 The Objectives in this study 4
Chapter 2 Data and Methodology 6
2.1 Data 6
2.1.1 Himawari-8 Advanced Himawari Imager (H8/AHI) 6
2.1.2 ECMWF Reanalysis v5 (ERA5) 8
2.2 References data 9
2.2.1 Radiosonde (RAOB) 9
2.2.2 Passive Microwave Radiometer 11
2.2.3 Ground-based Global Navigation Satellite System (GNSS) 11
2.2.4 SNPP CrIS/ATMS 13
2.2.5 GEO-KOMPSAT-2A Advanced Meteorological Imager (GK2A/AMI) 13
2.3 Methodology 15
2.3.1 Deep Neural Network (DNN) 15
2.3.2 Training Model and Prediction 18
2.3.3 Accuracy Metrics 21
Chapter 3 Results and Discussion 23
3.1 Model Performance Evaluation 23
3.2 Variable Importance Analysis 24
3.3 Evaluation Results 26
3.3.1 Radiosonde (RAOB) 27
3.3.2 Passive Microwave Radiometer 31
3.3.3 Ground-based Global Navigation Satellite System (GNSS) 32
3.3.4 SNPP CrIS/ATMS 41
3.3.5 GEO-KOMPSAT-2A Advanced Meteorological Imager (GK2A/AMI) 45
Chapter 4 The Application on Rapid Evolution Cases 53
4.1 Case of Tropical Depression in Kaohsiung on 22 Aug 2018 53
4.2 Case of Afternoon convection in Chianan Plain on 31 May 2022 55
Chapter 5 Conclusions and Future Works 58
References 60
參考文獻 Bessho, K., and Coauthors, 2016: An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. Journal of the Meteorological Society of Japan. Ser. II, 94, 151-183.
Bonafoni, S., V. Mattioli, P. Basili, P. Ciotti, and N. Pierdicca, 2011: Satellite-Based Retrieval of Precipitable Water Vapor Over Land by Using a Neural Network Approach. IEEE Transactions on Geoscience and Remote Sensing, 49, 3236-3248.
Chen, S.-H., Z. Zhao, J. S. Haase, A. Chen, and F. Vandenberghe, 2008: A Study of the Characteristics and Assimilation of Retrieved MODIS Total Precipitable Water Data in Severe Weather Simulations. Monthly Weather Review, 136, 3608-3628.
Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. Journal of Climate, 19, 53-68.
Elgered, G., J. M. Johansson, B. O. Ronnang, and J. L. Davis, 1997: Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophysical Research Letters, 24, 2663-2666.
Goldberg, M. D., H. Kilcoyne, H. Cikanek, and A. Mehta, 2013: Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. Journal of Geophysical Research: Atmospheres, 118, 13,463-413,475.
He, J., and Z. Liu, 2021: Water vapor retrieval from MERSI NIR channels of Fengyun-3B satellite using ground-based GPS data. Remote Sensing of Environment, 258.
Iturbide-Sanchez, F., S. R. S. da Silva, Q. Liu, K. L. Pryor, M. E. Pettey, and N. R. Nalli, 2018: Toward the Operational Weather Forecasting Application of Atmospheric Stability Products Derived From NUCAPS CrIS/ATMS Soundings. IEEE Transactions on Geoscience and Remote Sensing, 56, 4522-4545.
Jin, X., J. Li, T. J. Schmit, J. Li, M. D. Goldberg, and J. J. Gurka, 2008: Retrieving clear-sky atmospheric parameters from SEVIRI and ABI infrared radiances. Journal of Geophysical Research, 113.
Kühnlein, M., T. Appelhans, B. Thies, and T. Nauß, 2014: Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests. Journal of Applied Meteorology and Climatology, 53, 2457-2480.
Khalid, S., T. Khalil, and S. Nasreen, 2014: A survey of feature selection and feature extraction techniques in machine learning. 2014 Science and Information Conference, 372-378.
Kim, D., M. Gu, T.-H. Oh, E.-K. Kim, and H.-J. Yang, 2021: Introduction of the Advanced Meteorological Imager of Geo-Kompsat-2a: In-Orbit Tests and Performance Validation. Remote Sensing, 13.
Kleespies, T. J., and L. M. McMillin, 1990: RETRIEVAL OF PRECIPITABLE WATER FROM OBSERVATIONS IN THE SPLIT WINDOW OVER VARYING SURFACE TEMPERATURES. Journal of Applied Meteorology, 29, 851-862.
Lee, S., M.-H. Ahn, and S.-R. Chung, 2017: Atmospheric Profile Retrieval Algorithm for Next Generation Geostationary Satellite of Korea and Its Application to the Advanced Himawari Imager. Remote Sensing, 9.
Lee, S. J., M.-H. Ahn, and Y. Lee, 2015: Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager. Advances in Atmospheric Sciences, 33, 221-232.
Lee, S. J., M.-H. Ahn, and S. Ha, 2019: Total Column Ozone Retrieval From the Infrared Measurements of a Geostationary Imager. IEEE Transactions on Geoscience and Remote Sensing, 57, 5642-5650.
Li, J., Z. Li, Y.-K. Lee, and T. J. Schmit, 2014: Evaluation of the GOES-R ABI LAP Retrieval Algorithm Using the GOES-13 Sounder. Journal of Atmospheric and Oceanic Technology, 31, 3-19.
Li, Z., J. Li, W. P. Menzel, T. J. Schmit, J. P. Nelson, J. Daniels, and S. A. Ackerman, 2008: GOES sounding improvement and applications to severe storm nowcasting. Geophysical Research Letters, 35.
Liu, C. Y., C. H. Chiu, P. H. Lin, and M. Min, 2020: Comparison of Cloud‐Top Property Retrievals From Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and Radiosonde. Journal of Geophysical Research: Atmospheres, 125.
Liu, Z., and Coauthors, 2019: Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sensing, 11.
Ma, X. L., T. J. Schmit, and W. L. Smith, 1999: A Nonlinear Physical Retrieval Algorithm—Its Application to the <em>GOES-8/9</em> Sounder. Journal of Applied Meteorology (1988-2005), 38, 501-513.
Montavon, G., W. Samek, and K.-R. Müller, 2018: Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73, 1-15.
Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, 14, 609-624.
Sarker, I. H., 2021: Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci, 2, 160.
Schmit, T. J., J. Li, J. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the Continuation of Current Sounder Products. Journal of Applied Meteorology and Climatology, 47, 2696-2711.
Schroedterhomscheidt, M., A. Drews, and S. Heise, 2008: Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures. Remote Sensing of Environment, 112, 249-258.
Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727-730.
Wang, W., X. Sun, R. Zhang, Z. Li, Z. Zhu, and H. Su, 2007: Multi‐layer perceptron neural network based algorithm for estimating precipitable water vapour from MODIS NIR data. International Journal of Remote Sensing, 27, 617-621.
Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bulletin of the American Meteorological Society, 81, 677-694.
Weng, F., 2018: 7.03 - Advanced Technology Microwave Sounder Calibration and Validation. Comprehensive Remote Sensing, S. Liang, Ed., Elsevier, 42-63.
Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. Journal of Geophysical Research-Oceans, 102, 8703-8718.
Yeh, T.-K., J.-S. Hong, C.-S. Wang, T.-Y. Hsiao, and C.-T. Fong, 2014: Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS. Terrestrial, Atmospheric and Oceanic Sciences, 25.
Yeh, T.-K., H.-C. Shih, C.-S. Wang, S. Choy, C.-H. Chen, and J.-S. Hong, 2018: Determining the precipitable water vapor thresholds under different rainfall strengths in Taiwan. Advances in Space Research, 61, 941-950.
指導教授 劉千義 鍾高陞(Chian-Yi Liu Kao-Shen Chung) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明