博碩士論文 109426013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.149.24.70
姓名 梁祐嘉(Yu-Chia Liang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以移動式充電滿足電動物流車隊之用電需求
(Meeting the Electricity Demand of Electric Logistics Fleets with Mobile Charging Stations)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於全球氣候變遷,在國際能源總署所提出2050淨零碳排(Net zero emissions)的架構下,各國政府均依據階段性目標調整施政方針。目前我國交通運輸為化石燃料主要消費部門,儘管政府提出能耗標準、徵收碳費、購車補助等措施,但在大型車輛電動化的發展卻依然遲緩。由於貨車的能耗佔所有公路運具的29.27%、溫室氣體佔30.13%,並且登記數量遠高於大客車,若加速物流運輸產業電動化進程將有效降低台灣總碳排放量。然而電動貨車的價格為普通燃油貨車的3倍,且當前儲能技術較難滿足貨車高負重、長途運輸的車用需求;此外稀少的固定式充電站也讓充電時間產生很大不確定性,將影響貨物交期。因此本研究將透過搭配移動式充電的方式,彌補固定式充電站數量不足的問題,並消除物流業者的里程焦慮,建構一個專門為物流車隊補充電力的充電網路。
本研究為帶時間窗的車輛途程問題(VRP with Time Windows, VRPTW),根據電動物流車規格與發車班次間隔,找出需求點的發生時間、位置與服務時間進行求解。研究目標為滿足所有需求點的前提下,求出所需要的移動式充電數量,並最小化所有移動式充電的總行駛成本。在安全充電百分比、物流車車速、充電效率等條件設定下,研究結果分別以2、3、4班車(16、24、32個需求點)的情境下呈現,包括所需移動式充電數量、總行駛距離與成本,及每台移動式充電的服務路徑、服務次數及營運時間。在敏感度分析中,儲能裝置的容量大小會使移動式充電數量存在最少限制,否則無法滿足所有需求點;此外儲能裝置容量與移動式充電數也並非愈多愈好,超過臨界值後總行駛成本便不會再降低。此外,充電器的功率(kW)也會影響單次服務時間與總行駛成本。因此物流業者若希望將物流車隊電動化,須根據車隊規模來決定應派遣多少台移動式充電,並謹慎計算儲能電池容量及搭載合適功率的充電器,才能在完成所有充電需求的同時避免不必要的花費。
摘要(英) Due to global climate change, under the 2050 Net zero emissions framework proposed by the International Energy Agency, governments have adjusted their policies by phases. At present, Taiwan’s transportation department is the main consumer of fossil fuels. Although there are measures such as energy consumption standards, carbon tax, and subsidies for car purchase, the development of electrification of truck is still slow. The energy consumption of trucks accounts for 29.27% of all vehicles, greenhouse gases account for 30.13%, and the number of trucks (1,127,510) is much higher than buses (31,931). If the electrification process of logistics industry is accelerated, carbon emissions will be effectively reduced. For the logistics companies, the price of electric truck is three times than fuel truck, and current energy storage technology is still difficult to meet the needs of trucks with high load and long-distance moving. In addition, the scarcity of fixed charging stations also makes charging time greatly different, and will affect the delivery of goods. Therefore, this research will solve the problem of insufficient fixed charging stations by matching mobile charging stations (MCS), and eliminate range anxiety of truck drivers, to build a charging network specially designed for electric trucks power supplement.
This study is a vehicle routing problem with time windows (VRPTW). The problem is solved by using data such as the specifications of electric trucks, number of runs, the occurrence time, location and service time of demand points. The research goal is to find the required number of MCS on the premise of satisfying all demand points, and minimize the total transport cost of all MCS. The results are presented in the scenarios of 2, 3, and 4 runs of trucks (26, 24, and 32 demand points), respectively include the number of MCS required, total transport distance and cost, and the serving route, times of service and operating time of each MCS. In the sensitivity analysis, the capacity of the energy storage system will limit the number of MCS, otherwise it will not be able to meet all demand points. In addition, capacity will not make the total transport cost being reduced after the critical value is exceeded. The number of MCS also has a critical value, and the cost will not decrease after exceeds the certain value. Besides, the power (kW) of the charger will also affect the single service time and total transport cost. Therefore, if the logistics companies want to electrify their trucks, it is necessary to decide how many MCS should be dispatched according to the size of the fleets, and carefully calculate the capacity of battery and the charger with appropriate power rate, so that they can meet all the charging needs and avoid unnecessary cost.
關鍵字(中) ★ 再生能源
★ 電動車
★ 移動式充電
★ 車輛途程問題
★ 時間窗
關鍵字(英) ★ Renewable energy
★ Electric vehicle
★ Mobile charging station (MCS)
★ Vehicle Routing Problem (VRP)
★ Time windows
論文目次 目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 研究問題 1
1.1 全球暖化與永續發展 1
1.2 研究動機 5
1.3 研究問題 8
第二章 文獻探討 11
2.1 永續發展與綠色運輸 11
2.2 電動車 15
2.3 移動式充電於物流運輸網絡之應用 19
第三章 研究方法 23
3.1 問題分析 23
3.2 方法描述 25
3.3 數學模型 26
第四章 電腦實驗 30
4.1 資料蒐集 30
4.2 實驗結果分析 35
4.2.1 參數設定 35
4.2.2 結果分析 36
4.2.3 敏感度分析 39
第五章 結論 43
5.1 研究總結 43
5.2 後續工作 44
參考文獻 45
中文文獻 45
英文文獻 46
附錄一 51
附錄二 52
附錄三 53
附錄四 54
附錄五 54
參考文獻 中文文獻
[1] 經濟部能源局(2020)。109年能源統計手冊。經濟部。pp. 1-6。
[2] 經濟部能源局(2017)。風力發電4年推動計畫。經濟部。
[3] 經濟部能源局(2017)。太陽光電2年推動計畫(修正版)。經濟部。
[4] 行政院國家永續發展委員會(2019)。臺灣永續發展目標。
[5] 未來流通研究所(2021)。一張圖看懂台灣「電商物流」產業風貌。
檢自:https://reurl.cc/aNLqXl (上網日期:2022年1月2日)。
[6] 經濟部統計處(2021)。110年6月批發、零售及餐飲業營業額統計。
[7] 金東(2020)。蔚來給特斯拉充電?移動充電價值幾何?。
檢自:http://m.cbea.com/djgc/202006/325502.html(上網日期:2022年1月2日)。
[8] Greenpeace 綠色和平(2021)。升溫逼近關鍵的1.5度,IPCC釋出最新氣候報告。
檢自:https://reurl.cc/oxY8aM (上網日期:2022年1月14日)。
[9] 風險社會與政策研究中心能源資訊組(2020)。2019臺灣能源情勢回顧。
檢自:https://reurl.cc/l5YzmA (上網日期:2022年1月21日)。
[10] 鄭功賢(2021年3月1日)。去年零售業網路銷售額年增率19%。財訊。
檢自:https://reurl.cc/Y9bxyX (上網日期:2022年1月21日)。
[11] 肖何(2021年5月21日)。比克電池與漢龍通達戰略簽約20億投入聚焦移動充電
需求。電池網。檢自:https://reurl.cc/Vjg9y5 (上網日期:2022年1月25日)。
[12] 黃佩君、魏國金(2021年7月16日)。布局電商疫軍突起 經部估零售營業額下月回
升。自由財經。檢自:https://reurl.cc/Wkgnee (上網日期:2022年1月25日)。
[13] 曹美慧等人(2021)。運輸部門溫室氣體減量第二階段策略精進研究。交通部運輸研究所。
[14] 戴海茜(2021年10月20日)。東元與宅配通合作電動物流車明年H2推出,估2024年電動車比重達10%。msn財經。檢自:https://reurl.cc/n5YWAe (上網日期:2022年1月29日)。
[15] 經濟部能源局(2017)。105年年報。經濟部。pp.82-83。
[16] 台灣電力公司(2018)。標準型時間電價二段式。檢自:https://reurl.cc/q145mq。
[17] 施怡君等人(2021年11月19日)。台灣行不行—各國電動車政策大評比。風險社會與政策研究中心。
[18] 經濟部能源局(2020)。車輛能源效率管理。
[19] 陳信榮(2022年1月6日)。電動化車夯 今年市占挑戰20%。檢自:https://ctee.com.tw/news/industry/576620.html(上網日期:2022年2月2日)。
[20] 產業資訊平台(2022)。電動車輛產業相關產業政策。檢自:https://ic.tpex.org.tw/policy.php?ic=A300(上網日期:2022年2月2日)。
[21] 吳嘉峻(2008)。汽車路線貨運業之混合式軸輻路網設計研究。
[22] 嘉里大榮物流(2018)。民國一百零七年度年報。
[23] 高速公路局(2022)。建構電動車國道充電網 各服務區將全面建置快充站。
[24] 台灣智庫(2022)。運輸部門的淨零轉型:貨車電動化。檢自: https://reurl.cc/d2jGGz (上網日期:2022年6月19日)。
[25] TechNews科技新報(2019)。電動車充電規格大補帖,快充慢充差時間多少?特斯拉的充電樁只能給特斯拉嗎?。檢自: https://reurl.cc/55yr8n(上網日期:2022年6月19日)。
[26] 唐讓其(2016)。如何破解純電動物流車發展遇到的五道難題?。檢自: https://reurl.cc/zZje6a(上網日期:2022年6月19日)。
[27] IE06(2018)。運籌系列18:routing模型之VRPTW問題。檢自: https://reurl.cc/zZjeQV(上網日期:2022年6月19日)。
英文文獻
[28] Afshar, S. et al. (2020). A Literature Review on Mobile Charging Station Technology for Electric Vehicles. IEEE Transportation Electrification Conference & Expo (ITEC).
[29] Atmajaa, T. D., Mirdaniesa, M. (2015). Electric vehicle mobile charging station dispatch algorithm. Energy Procedia, Vol. 68, pp. 326-335.
[30] Bhuvaneswari, N., Ramesh, L., Ramakrishnan, R. (2016). Indian Railways Carbon Emission Reduction and Energy Performance. ICCICCT.
[31] Carson, R. (1962). Silent Spring.
[32] European Alternative Fuels Observatory (2020). Newly registered AF light commercial vehicles. Retrieved from https://www.eafo.eu/vehicles-and-fleet/n1 (Accessed: Dec. 25, 2021).
[33] European Alternative Fuels Observatory (2020). AF New Registrations. Retrieved from https://www.eafo.eu/vehicles-and-fleet/n1 (Accessed: Jan. 10, 2022).
[34] Goudie, A. S. (2013). Human Impact on the Natural Environment: Past, Present and Future (7th ed.). pp. 9-10.
[35] Green Revolution. In Wikipedia. Retrieved December 9, 2021, from https://en.wikipedia.org/wiki/Green_Revolution#Environmental_impact (Accessed: Feb. 2, 2022).
[36] Hardin, G. (1968). The Tragedy of the Commons. Science, New Series, Vol. 162, No. 3859, pp. 1243-1248.
[37] Hannan, M. A. et al. (2017). Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable and Sustainable Energy Reviews, Vol. 69, pp. 771-789.
[38] Hayajneh, H. S., Zhang, X. (2020). Logistics Design for Mobile Battery Energy Storage Systems. Energies.
[39] Huang, X. (2019). An optimal scheduling algorithm for hybrid EV charging scenario using consortium blockchains. Future Generation Computer Systems, Vol. 91, pp. 555-562.
[40] International Energy Agency (IEA) (2021). Net Zero by 2050 - A Roadmap for the Global Energy Sector (3rd ed.).
[41] International Institute for Applied Systems Analysis (IIASA) (2019). The Digital Revolution on and Sustainable Development: Opportunities and Challenges. doi: 10.22022/TNT/05-2019.15913.
[42] Intergovernmental Panel on Climate Change (IPCC) (2021). Sixth Assessment Report.
[43] Jaffery, S. H. I. et al. (2014). The potential of solar powered transportation and the case for solar powered railway in Pakistan. ELSEVIER, Renewable and Sustainable Energy Reviews, Vol. 39, pp. 270-276.
[44] Jiang, X. and Guo, X. (2020). Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study. Energies.
[45] Kumar, R. R., Alok, K. (2020). Adoption of electric vehicle: A literature review and prospects for sustainability. Journal of Cleaner Production, Vol. 253.
[46] Khaligh, A., Dusmez, S. (2012). Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles. IEEE Transactions On Vehicular Technology, Vol. 61, No. 8.
[47] Kun, A. (2020). Battery electric bus infrastructure planning under demand uncertainty. Transportation Research Part C: Emerging Technologies, Vol. 111, pp. 572-587.
[48] Larsen, J. et al. (2006). Vehicle Routing Problem with Time Windows. Column Generation, pp. 94-96.
[49] Lightning eMotors (2020). Lightning Systems Introduces ‘Lightning Mobile’ Electric Vehicle Charger for Trucks, Vans and Buses. Retrieved from https://reurl.cc/DZ4jYe (Accessed: Nov. 22, 2021).
[50] Lambert, F. (2019). Tesla deploys new mobile Supercharger powered by Megapack instead of diesel generators. Retrieved from https://electrek.co/2019/11/29/tesla-mobile-supercharger-megapack/ (Accessed: Nov. 7, 2021).
[51] Lehtinen, O. et al. (2020). Electric Vehicle Charging Loads in Residential Areas of Apartment Houses. IEEE.
[52] Lin, C. C., Chen, S. H., (2008). An integral constrained generalized hub-and-spoke network design problem. Transportation Research E, Vol. 44, No. 6, pp. 986-1003.
[53] Marshall Plan. In Wikipedia. Retrieved December 9, 2021, Retrieved from https://en.wikipedia.org/wiki/Marshall_Plan (Accessed: Nov. 7, 2021).
[54] Majumder, S., De, K., Kumar, P., Rayudu, R. (2019). A green public transportation system using E-buses: A technical and commercial feasibility study. ELSEVIER, Sustainable Cities and Society, Vol. 51.
[55] Nazir, C. P. (2019). Solar Energy for Traction of High Speed Rail Transportation: A Techno-economic Analysis. Civil Engineering Journal, Vol. 5, No. 7.
[56] PariseC (2022). Modeling examples using gurobi in python. Retrieved from https://reurl.cc/YvrOza (Accessed: May. 22, 2022).
[57] Richa, R., Babbitt, C. W., Gaustad, G. (2017). Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy. Journal of Industrial Ecology.
[58] Raboaca, M. S. (2020). An Optimization Model for the Temporary Locations of Mobile Charging Stations. Mathematics.
[59] Raboaca, M. S. (2019). Simulation of a mobile charging station operational mode. Progress of Cryogenics and Isotopes Separation, Vol. 22, Issue 1.
[60] Steffen, W., Rockström, J., Costanza, R. (2011). How Defining Planetary Boundaries Can Transform Our Approach to Growth. Solutions, Vol. 2, Issue 3.
[61] Steffen, W. et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, Vol. 347, Issue 1259855.
[62] Simone, D. D., Piegari, L. (2019). Integration of Stationary Batteries for Fast Charge EV Charging Stations. Energies.
[63] Saboori, H., Jadid, S., Savaghebi, M. (2021). Optimal Management of Mobile Battery Energy Storage as a Self-Driving, Self-Powered and Movable Charging Station to Promote Electric Vehicle Adoption. Energies.
[64] United Nations Framework Convention on Climate Change (UNFCCC) (2015). Report of the Conference of the Parties on its twenty-first session.
[65] World Commission on Environment and Development (WCED) (1987). Our Common Future. pp. 37.
[66] Wu, Y. A. et al. (2021). A review of evolutionary policy incentives for sustainable development of electric vehicles in China: Strategic implications. Energy Policy, Vol. 148.
[67] Zhang, X. et al. (2017). Review of electric vehicle policies in China: Content summary and effect analysis. Renewable and Sustainable Energy Reviews, Vol. 70, pp. 698-714.
[68] Zhang, X. et al. (2020). Mobile Charging as a Service: A Reservation-Based Approach. IEEE Transactions on Automation Science and Engineering.
[69] Zhang, Y. et al. (2020). Mobile charging: A novel charging system for electric vehicles in urban areas. Applied Energy.
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2022-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明