摘要(英) |
While the development of human civilization has brought progress, it’s also caused global warming due to the large emissions of GHGs generated by our over-reliance on fossil fuels. This human-induced climate change not only will escalate the occurrence of extreme weather, but also may impact the ecology, causing serious problems such as species extinction or food crisis. Therefore, reducing GHG emissions has become an important strategy to control global warming. According to statistics data, electricity and heat production is the economic sector that produces the highest carbon emissions. As the demand for energy in today′s society will only increase, the methods of using renewable energy to replace traditional power generation have gradually been valued. Among these means, the rapidly growing solar power generation has become a trend in recent years. The solar panel that we often hear is the core equipment of photovoltaic power generation which is the most mainstream generation method in the solar energy market nowadays. A solar power plant consists of large areas of solar panels that convert sunlight into electricity. However, cracks, broken surface glass, hot spots, foreign objects, or stains on the solar panel may affect its generation and life, hence regular inspection is necessary to keep it in its best condition. Nevertheless, with the different types of solar panels coming out, the traditional maintenance method that relies on manual labor is time-consuming, dangerous, and difficult. Thus, drone technology, which has recently matured, has become a new way to inspect solar panels.
To sum up, this research focuses on the path planning for floating solar plant inspection by using drone. Discuss the processes and methods from how to convert problem in realistic situation, to what constraints should be considered to build the algorithm after obtaining the network. The must-be-passed points in the inspection task, the location of the recharging station, and the optimal path for the drone are the three main issues we aim at. For that, we established a standard process for the network conversion of the realistic situation to answer the first issue, and proposed an adjusted algorithm based on Genetic Algorithm which can fit the condition to solve this drone routing problem. After the algorithm, there′s a set of recommended flight paths for inspection task and the recommended optimal recharging station setting positions can be obtained, thus the second and third issues can be completed. Finally, this study considers the combination of three types of information, including the coverage area and distribution of the power plant site, the need for subsequent image analysis, and the use model of drone, and considers the overlap rate as the key to problem conversion. The Zhang Bin solar panel plant has successfully been converted into a network with 4,798 nodes. And under the condition that the minimum limit of Genetic Algorithm iterations set to 300, the algorithm starts from a good initial solution while ensuring the feasibility of the solution obtained in the process, converges into an acceptable path solution that takes 1,605 minutes within a limited iteration, and recommends a relatively stable recharging station position (987.76, 438.62).
Keywords: floating solar plant; solar photovoltaics; photovoltaic inspection; unmanned aerial vehicles (UAV); drone; drone routing problem. |
參考文獻 |
中文文獻
[1] 今天頭條(2019)。無人機的發展歷史。今天頭條。檢自https://twgreatdaily.com/1HSMTG4BMH2_cNUgdjA7.html(訪問於2021年12月23日)。
[2] 方惠民、張崑宗、蕭松山、錢軒宇、蘇育弘(2019)。應用無人熱紅外線影像於近海域溫排水擴散之研究。第41屆海洋工程研討會,高雄市,臺灣。
[3] 王聰榮、林正軒(2020)。電推進無人機市場與技術發展趨勢。機械工業雜誌,先進馬達與電推進無人機技術專輯(448),20-28。
[4] 台灣科技媒體中心(2018)。水面太陽光電相關科學資訊。台灣科技媒體中心。檢自https://smctw.tw/3618/(訪問於2022年1月20日)。
[5] 先創國際(2021)。維護DJI大疆無人機電池健康安全的提示。先創國際。檢自https://www.esentra.com.tw/2021/01/%E7%B6%AD%E8%AD%B7dji-%E5%A4%A7%E7%96%86%E7%84%A1%E4%BA%BA%E6%A9%9F%E9%9B%BB%E6%B1%A0%E5%81%A5%E5%BA%B7%E5%AE%89%E5%85%A8%E7%9A%84%E6%8F%90%E7%A4%BA/(訪問於2022年5月25日)。
[6] 交通部民用航空局(2018)。民用航空法遙控-無人機專章。交通部民用航空局。檢自https://www.caa.gov.tw/Article.aspx?a=2194&lang=1(訪問於2022年1月20日)。
[7] 辰亞能源股份有限公司(2021)。太陽能電廠建置及光電教育推廣並進,辰亞能源樹立永續發展新標竿。辰亞能源股份有限公司。檢自https://www.chenya-energy.com/%e5%a4%aa%e9%99%bd%e8%83%bd%e9%9b%bb%e5%bb%a0%e5%bb%ba%e7%bd%ae%e5%8f%8a%e5%85%89%e9%9b%bb%e6%95%99%e8%82%b2%e6%8e%a8%e5%bb%a3%e4%b8%a6%e9%80%b2-%e8%be%b0%e4%ba%9e%e8%83%bd%e6%ba%90%e6%a8%b9/(訪問於2022年1月19日)。
[8] 邱家琳(2021)。開發水上型光電還不夠!辰亞能源將積極參與漁電共生。上報。檢自https://www.upmedia.mg/news_info.php?Type=5&SerialNo=117610(訪問於2022年2月16日)。
[9] 洪永杰(2019)。新及再生能源前瞻技術掃描評估及研發推動—搭載輕量型監測太陽光電裝置之發電數據異常類型診斷系統創新前瞻計畫。財團法人資訊工業策進會。
[10] 深圳大疆創新科技有限公司。發電巡檢。DJI Enterprise。檢自https://enterprise.dji.com/zh-tw/electricity/power-generation-management(訪問於2021年11月25日)。
[11] 深圳大疆創新科技有限公司(2021)。Mavic 2 Enterprise Advanced使用者手冊。DJI。檢自https://www.dji.com/tw/downloads/products/mavic-2-enterprise-advanced(訪問於2022年6月22日)。
[12] 強將實業(2020)。無人機大時代:太陽能板空拍巡檢。強將實業-鴻大非破壞性檢測顧問。檢自https://www.ir.com.tw/newsdetail_tw.php?id=2518(訪問於2022年2月16日)。
[13] 康智堯(2021)。太陽能發電火災案例研析。內政部消防署。檢自http://monthly.nfa.gov.tw/article.php?id=189(訪問於2022年2月16日)。
[14] 程式人生。無人機系列之發展史(2019)。程式人生。檢自https://www.itread01.com/content/1548371542.html(訪問於2021年12月23日)。
[15] 翔隆航太股份有限公司(2021)。太陽能巡檢無人機設備推薦。Dragonfly UAS。檢自https://www.dragonflyuas.com.tw/post/drone-in-solar(訪問於2022年1月19日)。
[16] 楊明德、莊子毅、韓仁毓(2018)。結合光學與紅外線熱影像正射鑲嵌處理。航測及遙測學刊,23(2),71-81。https://doi.org/10.6574/JPRS.201806_23(2).0001。
[17] 鍾晨沅(2020)。太陽能系統自動蓄電,提升無人機續航力。大學報。檢自https://unews.nccu.edu.tw/unews/%EF%BC%88%EF%BD%86%EF%BC%89%E6%87%89%E7%94%A8%E6%96%BC%E7%84%A1%E4%BA%BA%E6%A9%9F%E8%BC%89%E5%85%B7%E4%B9%8B%E9%AB%98%E6%95%88%E8%83%BD%E5%A4%AA%E9%99%BD%E8%83%BD%E5%85%89%E4%BC%8F%E5%85%85%E9%9B%BB/(訪問於2022年1月19日)。
英文文獻
[18] Allahyari, S., Salari M. & Vigo, D. (2015). A Hybrid Metaheuristic Algorithm for the Multi-depot Covering Tour Vehicle Routing Problem. European Journal of Operational Research, 242(3), 756-768. https://doi.org/10.1016/j.ejor.2014.10.048.
[19] Askri, G. (2018). State of art of the Capacitated Vehicle Rooting Problem. Medium. Retrieved from https://medium.com/cmsa-algorithm-for-the-service-of-the-capacitated/state-of-art-of-the-capacitated-vehicle-rooting-problem-30ad4de6c2e9 (Accessed Apr. 20, 2022).
[20] Baik, H. & Valenzuela, J. (2018). Unmanned Aircraft System Path Planning for Visually Inspecting Electric Transmission Towers. Journal of Intelligent & Robotic Systems, 95, 1097-1111. https://doi.org/10.1007/s10846-018-0947-9.
[21] Belfiore, P. & Yoshizaki, H. (2009). Scatter Search for a Real-life Heterogeneous Fleet Vehicle Routing Problem with Time Windows and Split Deliveries in Brazil. European Journal of Operational Research, 199(3), 750-758. https://doi.org/10.1016/j.ejor.2008.08.003.
[22] Besada, J. A., Bergesio, L., Campaña, I., Vaquero-Melchor, D., López-Araquistain, J., Bernardos, A. M. & Casar, J. R. (2018). Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors. Sensors, 18(4), 1170. https://doi.org/10.3390/s18041170.
[23] Blanton, J. L. & Wainwright, R. L. (1993). Multiple Vehicle Routing with Time and Capacity Constraints Using Genetic Algorithms. Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA.
[24] Brakels, R. (2017). Solar Panel Maintenance: How often should they be inspected. Retrieved from https://www.solarquotes.com.au/blog/solar-panel-maintenance-often-inspected/#comments (Accessed Jun. 19, 2022).
[25] Chung, H.-M., Maharjan, S., Zhang, Y., Eliassen, F. & Strunz, K. (2021). Placement and Routing Optimization for Automated Inspection with Unmanned Aerial Vehicles: A Study in Offshore Wind Farm. IEEE Transactions on Industrial Informatics, 17(5), 3032-3043. https://doi.org/10.1109/TII.2020.3004816.
[26] Clarke, G. & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research, 12(4), 568-581. https://doi.org/10.1287/opre.12.4.568.
[27] Dantzig, G. B. & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91. https://doi.org/10.1287/mnsc.6.1.80.
[28] Drexl, M. (2012). Rich Vehicle Routing in Theory and Practice. Logistics Research, 5, 47-63. https://doi.org/10.1007/s12159-012-0080-2.
[29] Elliott, J. A. (2012). An Introduction to Sustainable Development (4th ed.). Routledge.
[30] Energy Information Administration. Renewable Energy Explained. Retrieved from https://www.eia.gov/energyexplained/renewable-sources/ (Accessed Oct. 28, 2021).
[31] Environmental Protection Agency. Global Greenhouse Gas Emissions Data. Retrieved from https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (Accessed Oct. 28, 2021).
[32] Gandreau, M., Guertin, F., Potvin, J.-Y. & Seguin, R. (2006). Neighborhood Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries. Transportation Research Part C: Emerging Technologies, 14(3), 157-174. https://doi.org/10.1016/j.trc.2006.03.002.
[33] Gutin, G. & Punnen, A. P. (2002). The Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers.
[34] Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Mitigation of Climate Change. Cambridge University Press.
[35] Intergovernmental Panel on Climate Change (2018). Global Warming of 1.5°C. World Meteorological Organization.
[36] Intergovernmental Panel on Climate Change (2021). Climate Change 2021: Global warming Basis. Cambridge University Press (in press).
[37] International Energy Agency (2019). Solar Energy: Mapping the Road Ahead. IEA.
[38] Jabir, E., Panicker, V. V. & Sridharan, R. (2017). Design and Development of a Hybrid Ant Colony-Variable Neighborhood Search Algorithm for a Multi-depot Green Vehicle Routing Problem. Transportation Research Part D: Transport and Environment, 57, 422-457. https://doi.org/10.1016/j.trd.2017.09.003.
[39] Kumar, S. N. & Panneerselvam, R. (2012). A Survey on the Vehicle Routing Problem and Its Variants. Intelligent Information Management, 4(3), 66-74. https://doi.org/10.4236/iim.2012.43010.
[40] Lee, D. H. & Park, J. H. (2019). Developing Inspection Methodology of Solar Energy Plants by Thermal Infrared Sensor on Board Unmanned Aerial Vehicles. Energies 2019, 12(15), 2928. https://doi.org/10.3390/en12152928.
[41] Li, Y., Yang, W., Huang, B. (2020). Impact of UAV Delivery on Sustainability and Costs under Traffic Restrictions. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/9437605.
[42] Liu, Y., Shi, J., Liu, Z., Huang, J. & Zhou, T. (2019). Two-layer Routing for High-voltage Powerline Inspection by Cooperated Ground Vehicle and Drone. Energies, 12(7), 1385. https://doi.org/10.3390/en12071385.
[43] Muntwyler, U., Schuepbach, E. & Lanz, M. (2015). Infrared (IR) Drone for Quick and Cheap PV Inspection. 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany.
[44] Nagata, Y. & Bräysy, O. (2009). A Powerful Route Minimization Heuristic for the Vehicle Routing Problem with Time Windows. Operations Research Letters, 37(2009), 333-338. https://doi.org/10.1016/j.orl.2009.04.006.
[45] Natural Sciences and Engineering Research Council of Canada & the Department of Combinatorics and Optimization at the University of Waterloo (2021). The Traveling Salesman Problem. Solving TSPs. Retrieved from https://www.math.uwaterloo.ca/tsp/index.html (Accessed Jun. 22, 2022).
[46] Nazif, H. & Lee, L. S. (2012). Optimised Crossover Genetic Algorithm for Capacitated Vehicle Routing Problem. Applied Mathematical Modelling, 36(5), 2110-2117. https://doi.org/10.1016/j.apm.2011.08.010.
[47] Renewables Now (2021). The 2021 edition of the Renewables Global Status Report. REN21.
[48] Ritchie, H. & Roser, M. (2020). CO₂ and Greenhouse Gas Emissions. Retrieved from https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (Accessed Oct. 28, 2021).
[49] Ritchie, H. & Roser M. (2020). Energy. Retrieved from https://ourworldindata.org/energy (Accessed Oct. 28, 2021).
[50] Seo, J., Duque, L. & Wacker, J. (2018). Drone-enabled Bridge Inspection Methodology and Application. Automation in Construction, 94(2018), 112-126. https://doi.org/10.1016/j.autcon.2018.06.006.
[51] Single European Sky ATM Research 3 Joint Undertaking (2017). European Drones Outlook Study: Unlocking the Value for Europe. Publications Office.
[52] Solar Energy Industries Association. Solar Energy. Retrieved from https://www.seia.org/initiatives/about-solar-energy (Accessed Nov. 11, 2021).
[53] Toth, P. & Vigo, D. (2002). The Vehicle Routing Problem. SIAM.
[54] United Nations (1992). United Nations Framework Convention on Climate Change.
[55] United Nations (2015). Paris Agreement.
[56] World Commission on Environment and Development (1987). Our Common Future. Oxford University Press.
[57] World Resources Institute (2021). Climate Watch Historical GHG Emissions. Retrieved from https://www.climatewatchdata.org/ghg-emissions?breakBy=sector&end_year=2017&gases=all-ghg§ors=total-including-lucf&start_year=1990 (Accessed Oct. 28, 2021).
[58] Zachariadisa, E. E., Tarantilisb, C. D. & Kiranoudis, C. T. (2009). A Hybrid Metaheuristic Algorithm for the Vehicle Routing Problem with Simultaneous Delivery and Pick-up Service. Expert Systems with Applications, 36(2), 1070-1081. https://doi.org/10.1016/j.eswa.2007.11.005. |