博碩士論文 109322078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.144.187.103
姓名 陳律廷(Lu-Ting Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用衛載合成孔徑雷達觀測 2018花蓮地震同震及震後地表變形
(Co-seismic and Post-seismic Ground Displacement Monitoring After 2018 Hualien Earthquake Using Space-borne Synthetic Aperture Radar)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 高光譜影像立方體於特徵空間之三維紋理計算
★ 影像修補技術於牆面紋理影像遮蔽去除之應用★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 利用近景影像提高三維建物模型之細緻化等級★ 以地面及空載光達點雲重建複雜物三維模型
★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用★ 二次微分法於空載全波形光達之特徵萃取與地物分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位在菲律賓海板塊與歐亞⼤陸板塊的邊界,地處環太平洋地震帶,⾧
年受到造⼭運動的影響,造成了東半部的多⼭地形並且有頻繁的地震。2018年2
⽉6⽇發⽣了芮⽒規模6.26的花蓮地震,震央在花蓮外海,主要的變形區域集中
在⽶崙斷層與嶺頂斷層兩個主要的斷層的周圍。在這場⼤地震後零星的餘震持
續的出現,且兩個斷層位置就位在花蓮平坦市區,該地區主要有花蓮市與吉安
鄉兩個⾏政區,⽽兩個⾏政區正是花蓮地區⼈⼝⾼度密集的位置,因此持續監
測此地區地表變形⾮常重要,本研究主要監測花蓮兩個⾏政區的同震與震後變
形。過去應⽤在偵測地表變形主要仰賴⽔準測量與GPS連續測站資料,本研究
使⽤雷達⼲涉技術(InSAR)應⽤Sentinel-1A和1B雷達影像針對⽬標區域進⾏
地表變形觀測,其中DInSAR技術適合使⽤在單⼀事件觀測,所以將這項技術使
⽤在同震位移觀測,⽽PSInSAR技術則適合使⽤在時間序列的觀測,所以將這
個技術應⽤在震後地表變形的觀測。同震分析結果顯⽰在花蓮市區有-172 mm,
在嶺頂斷層西側277 mm⽽在東側則只有190 mm皆是在視衛星⽅向上,並結合
GPS、斷層線位置、⽔準測量結果與地震調查報告進⾏相關驗證⽐對有⾼度的
同調性。震後分析在時間序列上將參考點設置在鄰近的GPS連續觀測站點,研
究成果顯⽰PSInSAR與GPS觀測的資料呈現⾼度相關,且分析的成果顯⽰⽶崙
斷層從南往北變形由遠離轉為接近衛星⽅向,市區沿海地區接近衛星趨勢明顯
為-9.34~-7.45 mm/year,從花蓮⾼級⼯業職業學校往花蓮航空站從接近衛星2.05
mm/year變化⾄接近衛星7.07 mm/year,花蓮觀光漁港區域為遠離衛星趨勢3.87~-7.57 mm/year,慈濟⼤學⾄北埔⽕⾞站接近衛星情況⾮常劇烈為7.79 mm/
year~14 mm/year,美崙⼯業區整體的震後變形趨勢為6.83~10.21 mm/year。在
南部的嶺頂斷層附近變形為遠離衛星約為-17.69~-18.27 mm/year,位在斷層西側
遠離衛星⽅向位移略⼩為-11.33 mm/year~-15.36mm/year,⽽斷層東側狀況較明
顯為-17.43mm/year~-21.23mm/year,嶺頂斷層往西邊銅⾨⽅向則由遠離衛星⽅
向-2.35mm/year轉變為接近衛星⽅向11.46mm/year。
關鍵字:地表變形、Sentinel - 1、PSInSAR、DInSAR
摘要(英) The island of Taiwan is located at the junction of the Eurasian plate and the
Philippine plate. This location, in the Southeast Asia Circum-Pacific Belt, increases
the probability of earthquakes, which are regularly occurring in Taiwan. On February
6, 2018 at 23:50:41, an earthquake occurred in north-eastern part of Taiwan with the
epicenter close to coast, near the city of Hualien. The earthquake was ML6.26 and
caused serious casualties. Although the epicenter was located off the coast of Hualien,
the deformation around Hualien was massive. Two major faults, the Milun fault and
the Lingding fault, are located within dense populated urban area. Therefore, it is
important to continuously monitor the deformation around the region. This study used
Sentinel 1A and 1B SAR images to analyze the co-seismic deformation in Hualien
with Differential Interferometry Synthetic Aperture Radar (DInSAR). In addition, the
post-seismic deformation analyzed with the Persistent Scatterers Interferometric
Synthetic Aperture Radar (PSInSAR) was used to investigate long-term changes. The
PSInSAR and DInSAR analyses were validated with official GPS observation data.
The co-seismic results agree with the co-seismic leveling survey around the location
of the Milun and Lingding fault lines. Generally, the deformation of the urban area in
Hualien can be described by the line of sight (LOS) direction -172 mm. On the west
side of the Lingding fault, 277 mm close to the satellite in the LOS direction, and 190
mm closer to satellite in the east side were detected. The results of post-seismic
deformation correlate reasonably with the GPS data. The post-seismic results show
that the deformation of the Miluun fault changes from south to north, from far away
from the satellite to close to the satellite. The away from satellite trend in urban
coastal areas is obviously -9.34 ~ -7.45 mm/year. From Hualien Industrial Vocational
Senior High School to Hualien Airport, the close to the satellite changes from 2.05
mm/year to 7.07 mm/year, and the Hualien Seafood Fishing Port area is away from
satellite -3.87~-7.57 mm/year. The close to satellite from Tzu Chi University to Beipu
Railway Station is 7.79 mm/year~14 mm/year, and the deformation trend at Meilun
Industrial Zone is 6.83~10.21 mm/year. The Lingding fault in the south with an
average away from satellite -17.69~-18.27 mm/year, the west side of the fault was
slightly less -11.33 mm/year~-15.36 mm/year, whereas the east side of the fault
-17.43 mm/year~-21.23 mm/year. The fault turns into close to satellite of -2.35 mm/
year ~11.46 mm/year in the direction of Tongmen.
Keywords: Land deformation, PSInSAR, DInSAR, Sentinel-1
關鍵字(中) ★ 地表變形
★ Sentinel - 1
★ PSInSAR
★ DInSAR
關鍵字(英) ★ Land deformation
★ PSInSAR
★ DInSAR
★ Sentinel-1
論文目次 ⽬錄
摘要-----------------------------------------------------i
Abstract -----------------------------------------------ii
誌謝----------------------------------------------------iii
⽬錄 ----------------------------------------------------iv
圖⽬錄---------------------------------------------------vi
表⽬錄---------------------------------------------------ix
第⼀章、緒論----------------------------------------------1
1-1. 研究動機與⽬的 --------------------------------------1
1-2. 論⽂架構---------------------------------------------7
第⼆章、⽂獻回顧 ------------------------------------------9
2-1 研究區域地形概況---------------------------------------9
2-2 地質背景 ---------------------------------------------9
2-3. 花蓮地震相關⽂獻報告---------------------------------13
2-4. 雷達影像--------------------------------------------15
2-5 合成孔徑雷達差分⼲涉技術 -----------------------------18
第三章、研究⽅法------------------------------------------22
3-1. 研究⽅法概述-----------------------------------------22
3-2. 研究資料集選擇 --------------------------------------24
3-3. DInSAR 分析 ----------------------------------------32
3-4. PSInSAR分析-----------------------------------------35
第四章、研究成果與討論 -----------------------------------44
4-1. 同震位移分析結果-------------------------------------45
4-2. 同震分析與相關⽂獻對⽐ ------------------------------53
4-3. 震後位移分析 ---------------------------------------55
4-4. 震後位移分析與相關⽂獻⽐較 --------------------------69
第五章、結論與建議 ---------------------------------------72
參考⽂獻 ------------------------------------------------75
附錄Q&A ----------------------------------------------80
參考文獻 Chang, C. P., Chen, K. S., Wang, C. T., Yen, J. Y., Chang, T. Y., & Lin, C. W.(2004). Application of space-borne radar interferometry on crustal deformations in Taiwan: A perspective from the nature of events. Terrestrial Atmospheric and Oceanic Sciences, 15(3), 523-544.

Chang, C. P., Yen, J. Y., Hooper, A., Chou, F. M., Chen, Y. A., Hou, C. S., ... & Lin, M. S. (2010). Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques. Terrestrial, Atmospheric & Oceanic Sciences, 21(3).

Chang, K. J., J. B. H. Shyu, Y. C. Chan, R. F. Chen, and E. C. Yen, 2014: Near fault active deformation and morphotectonic analysis based on high-resolution Airborne LiDAR data (4/4). Central Geological Survey, MOEA Investigation Report, 260 pp. (in Chinese).

Cheng, S. N., Yu, T. T., Yeh, Y. T., & Chang, Z. S. (1997). Relocation of the 1951 Hualien, Taitung earthquake sequence. In Proceedings of Meteorology, Conference on Weather Analysis and Forecasting (pp. 690-699). Taipei, Taiwan:
Central Weather Bureau.

Delgado Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring urban subsidence in the Rome metropolitan area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sensing, 11(2), 129.

Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.

Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2). Springer Science & Business Media.

Hooper, A., Segall, P., Johnson, K., & Rubinstein, J. (2002). Reconciling seismic and geodetic models of the 1989 Kilauea south flank earthquake. Geophysical research letters, 29(22), 19-1.

Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).

Hooper, A., & Zebker, H. A. (2007). Phase unwrapping in three dimensions with application to InSAR time series. JOSA A, 24(9), 2737-2747.

Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7).

Hooper, A. (2008). A multi-temporal InSAR method incorporating both
persistent scatterer and small baseline approaches. Geophysical Research Letters,
35(16).

Hooper, A. (2010). A statistical-cost approach to unwrapping the phase of InSAR time series. In Proceedings of the International Workshop on ERS SAR Interferometry, Frascati, Italy (Vol. 30).

Hooper, A., Bekaert, D., Ekbal, H., & Spaans, K. (2018). StaMPS/MTI manual: Version 4.1 b. School of Earth and Environment, University of Leeds. Retrieved May,
15, 2022.76

Hsu, Y. C., Chang, C. P., Yen, J. Y., Kuo-Chen, H., & Wang, C. C. (2019). Investigating the structure of the Milun fault from surface ruptures of the 2018 Hualien earthquake. Terr. Atmos. Ocean. Sci., 30, 337-350.

Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4), 209-226.

Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).

Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., & Ruiz, A. M. (2011). Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652-2663.

Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.

花蓮縣⾃2018年⾄2020年發⽣之地震分布圖,中央氣象局地震測報中⼼,
檢⾃:https://scweb.cwb.gov.tw/zh-tw/station/,最近檢索⽇期2022年5⽉。

地質敏感區範圍數值檔,經濟部中央地質調查所,檢⾃: https:/ /
www.moeacgs.gov.tw/laws/detail?id=cab5108291ca4cbf9614860b113c1f5f,最近檢
索⽇期2022年五⽉。

臺灣省氣象所(1951),中華民國41年地震報告,83⾴。

陳⽂⼭, 林益正, 顏⼀勤, 楊志成, 紀權窅, ⿈能偉, ... & 盧詩丁. (2008). 從古地震研究與 GPS 資料探討縱⾕斷層的分段意義. 經濟部中央地質調查所特刊,(20), 165-191.

陳⽂⼭(2016)台灣地質概論,中華民國地質學會,共 250 ⾴。

林朝棨(1957)台灣地形。台灣省⽂獻委員會,共 424 ⾴。

朱傚祖, & 游明聖. (1997). 臺東縱⾕地震與斷層關係之研究. ⾏政院國家科學委員會專題研究計畫成果報告, NSC86-2116-M-047-002, 共, 133.

中央地質調查所(2018年3⽉),20180206花蓮地震研究報告,共108⾴。

中央地質調查所(2021年12⽉),2021年版台灣斷層分佈圖中⽂版,
https://faultnew.moeacgs.gov.tw/About/Fault_map,最近檢索⽇期2022年5⽉。

2018花蓮地震前後震震央位置,交通部中央氣象局地震測報中⼼,檢⾃:
https://scweb.cwb.gov.tw/zh-tw/earthquake/data/,最近檢索⽇期2022年五⽉。

花蓮民政處⼾政科(2021 年 3 ⽉)。鄉鎮⼈⼝密度報告。檢⾃:https://ca.hl.gov.tw/Detail/7432522d580b4a84a3813ab33abd5f80 ,最近檢索⽇期 2022 年4 ⽉。

戴于恒(2016)。應⽤合成恐孔徑雷達差分⼲涉技術監測⼭崩之淺移現象—以九份烏來為例[碩⼠論⽂,國⽴中央⼤學]。台灣碩博⼠論⽂加值系統。https://hdl.handle.net/11296/32bq9r。

盧志恆(2009)。應⽤永久散射體差分⼲涉法探討花蓮市區斷層活動與地
表變形[碩⼠論⽂,臺北市⽴教育⼤學]。台灣碩博⼠論⽂加值系統。https://hdl.handle.net/11296/ny496n。
指導教授 蔡富安(Fuan Tsai) 審核日期 2022-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明