博碩士論文 110322021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:3.133.87.156
姓名 楊鉑洪(Bo-Hong Yang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 混凝土缺陷自動修補機器人之研發
(Research and development of automatic repairing robot for concrete defects)
相關論文
★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks
★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置
★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
★ 具即時聽覺辨識之機械手臂應用於螺栓鬆脫檢測之研究★ 生物啟發式攀爬機器人應用於外牆磁磚缺陷檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 現今的噴射混凝土的噴塗工程,包含建築牆面、隧道工程的噴塗作業,大部分都是由人力完成,在作業的過程中會因為噪音、粉塵、嚴峻的施工環境等對施工人員造成不可逆的傷害;建築物以及隧道工程亦有檢修年限的問題,依舊需要人力檢修以及補強。
  本研究預計研發一款混凝土缺陷自動修補機器人,此機器人經由微控制器(Micro Control Unit ,MCU)控制各機構的行為,在手機或電腦端以無線網路(Wi-Fi)連接微控制器進行遠端控制,互動介面則是客製化網頁,使用HTML以及JavaScript編寫溝通伺服器端以及客戶端;在噴射混凝土噴槍上方搭載視覺辨識模組,基於機器學習 (Machine Learning)以及影像辨識(Visual Recognition)技術蒐集圖片進行訓練替代人力檢測,視覺辨識訓練使用卷積神經網路(Convolutional Neural Network, CNN)演算法,多次調整訓練模型訓練後正確率達到94.2%、隨機圖片預測正確率97.28%,F1-Score在訓練模型達到0.9、隨機圖片預測達到0.96,並設計演算法完成牆面自動掃描,微控制器配合視覺辨視模組回報牆面缺陷狀況,當缺陷被辨識到,微控制器將遠端控制噴射混凝土幫浦控制盒的微控制器扳動開關,即可自動化完成缺陷自動噴塗修補作業。
  本研究整合機器人自動控制、噴射混凝土、視覺辨識系統、物聯網系統以及網頁遠端控制,經由實驗證實可以自動化完成缺陷辨識以及噴射混凝土的噴塗作業,開發出未來自動化缺陷辨識補強機器人的雛形。
摘要(英) Nowadays, shotcrete operation, including the spraying of building walls and tunnels, is done mainly by human resources. During the operation, it will cause irreversible damage to the construction personnel due to noise, dust, and a severe construction environment. Buildings and tunnel projects also have the problem of the maintenance period, which still requires manual maintenance and reinforcement.
This research is expected to develop an automatic repairing robot for concrete defects. This robot controls the behavior of each device through a microcontroller and connects the microcontroller with a wireless network (Wi-Fi) on the mobile phone or computer. Remote control, the user interface is a customized web page using HTML and JavaScript to contact the communication server and client. A visual recognition module is carried on the shotcrete spray gun, based on Machine Learning and Visual Recognition technology to collect pictures for visual recognition to replace manual work. Visual recognition training uses Convolutional Neural Network (CNN) algorithm. Then designed, an algorithm automatically scans the target wall, and the microcontroller cooperates with the visual recognition module to report the defect status of the wall. When the defect is identified, the microcontroller will remotely control the microcontroller of the shotcrete pump control box and flip the switch to automate complete the defect automatic spray repair operation. After adjusting the training model many times, the accuracy rate reached 94.2%, the random image prediction accuracy rate was 97.28%, and the F1-Score reached 0.9 in the training model and 0.96 in random image prediction.
This research develops the prototype of the future automated defect identification reinforcement robot. This research integrates automatic robot control, shotcrete, visual recognition system, Internet of Things system, and web remote control. It has been confirmed through experiments that defect identification and shotcrete spraying can be automatically completed.
關鍵字(中) ★ 噴射混凝土
★ 機器學習
★ 視覺辨識
★ 物聯網應用
★ 機器人
★ 自動控制
關鍵字(英) ★ shotcrete
★ machine learning
★ visual recognition
★ IoT applications
★ robotics
★ automatic control
論文目次 摘要 vii
Abstract viii
致謝 x
目錄 xi
表目錄 xiii
圖目錄 xiii
一、緒論 1
1-1研究背景及動機 1
1-2研究目的 2
1-3論文架構 2
二、文獻回顧 3
三、研究方法 7
3-1 混凝土缺陷自動修補機器人系統架構 7
3-2機器人架構設計與實作 9
3-2-1混凝土缺陷自動修補機器人設計概念 9
3-2-2混凝土缺陷自動修補機器人機構設計 10
3-2-3噴射混凝土供料系統 19
3-2-4控制系統與機器視覺系統設計 23
3-3軟體設計與實作 30
3-3-1機器人遠端通訊 30
3-3-2機器人自動控制 34
3-4基於機器視覺辨識混凝土缺陷辨識方法 35
3-4-1訓練資料蒐集以及分類 35
3-4-2 視覺訓練模型 39
3-4-3視覺模型成果檢測 43
3-5演算法規畫以及虛擬碼(Pseudo Code) 49
四、實驗設計及規劃 53
4-1牆面設計與建置 53
4-2牆面噴塗實驗 54
4-3混凝土缺陷自動修補實驗 60
五、實驗結果與討論 62
5-1自動噴塗實驗 62
5-2 視覺辨識現地測試 66
5-3混凝土缺陷自動修補實驗成果 71
六、結論以及未來展望 79
6-1 結論 79
6-2未來展望 79
七、參考文獻 80
參考文獻 [1] M. Shabdin, N. K. Attari, and M. Zargaran, "Experimental study on seismic behavior of Un-Reinforced Masonry (URM) brick walls strengthened with shotcrete," Bulletin of Earthquake Engineering, vol. 16, no. 9, pp. 3931-3956, 2018.
[2] L. Malmgren, E. Nordlund, and S. Rolund, "Adhesion strength and shrinkage of shotcrete," Tunnelling and underground space technology, vol. 20, no. 1, pp. 33-48, 2005.
[3] J. Nobre, M. Bravo, J. de Brito, and G. Duarte, "Durability performance of dry-mix shotcrete produced with coarse recycled concrete aggregates," Journal of Building Engineering, vol. 29, p. 101135, 2020.
[4] M. A. Çakıroğlu, G. İnce, H. T. Kabas, and A. A. Süzen, "Experimental examination of the behavior of shotcrete-reinforced masonry walls and XgBoost neural network prediction model," Arabian Journal for Science and Engineering, vol. 46, no. 11, pp. 10613-10630, 2021.
[5] G. Liu, W. Cheng, L. Chen, G. Pan, and Z. Liu, "Rheological properties of fresh concrete and its application on shotcrete," Construction and Building Materials, vol. 243, p. 118180, 2020.
[6] M. J. Lato and M. S. Diederichs, "Mapping shotcrete thickness using LiDAR and photogrammetry data: Correcting for over-calculation due to rockmass convergence," Tunnelling and Underground Space Technology, vol. 41, pp. 234-240, 2014.
[7] M. R. Wrock and S. B. Nokleby, "Robotic shotcrete thickness estimation using fiducial registration," in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018, vol. 51807: American Society of Mechanical Engineers, p. V05AT07A074.
[8] A. Ansell, "Investigation of shrinkage cracking in shotcrete on tunnel drains," Tunnelling and Underground Space Technology, vol. 25, no. 5, pp. 607-613, 2010.
[9] N. De Belie, C. Grosse, J. Kurz, and H.-W. Reinhardt, "Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour," Cement and Concrete Research, vol. 35, no. 11, pp. 2087-2094, 2005.
[10] N. Sharma, V. Jain, and A. Mishra, "An analysis of convolutional neural networks for image classification," Procedia computer science, vol. 132, pp. 377-384, 2018.
[11] Y.-A. Hsieh and Y. J. Tsai, "Machine learning for crack detection: Review and model performance comparison," Journal of Computing in Civil Engineering, vol. 34, no. 5, p. 04020038, 2020.
[12] H. Kim, E. Ahn, M. Shin, and S.-H. Sim, "Crack and noncrack classification from concrete surface images using machine learning," Structural Health Monitoring, vol. 18, no. 3, pp. 725-738, 2019.
[13] A. Athanasiou, A. Ebrahimkhanlou, J. Zaborac, T. Hrynyk, and S. Salamone, "A machine learning approach based on multifractal features for crack assessment of reinforced concrete shells," Computer‐Aided Civil and Infrastructure Engineering, vol. 35, no. 6, pp. 565-578, 2020.
[14] T. Marcher, G. H. Erharter, and M. Winkler, "Machine Learning in tunnelling–Capabilities and challenges," Geomechanics and Tunnelling, vol. 13, no. 2, pp. 191-198, 2020.
[15] T. D. Carrigan, B. E. Forrest, H. N. Andem, K. Gui, L. Johnson, J. E. Hibbert, B. Lennox, and R. Sloan, "Nondestructive testing of nonmetallic pipelines using microwave reflectometry on an in-line inspection robot," IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 2, pp. 586-594, 2018.
[16] T. H. Dinh, Q. P. Ha, and H. M. La, "Computer vision-based method for concrete crack detection," in 2016 14th international conference on control, automation, robotics and vision (ICARCV), 2016: IEEE, pp. 1-6.
[17] W. Jiang, M. Liu, Y. Peng, L. Wu, and Y. Wang, "HDCB-Net: A neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges," IEEE Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5485-5494, 2020.
[18] S.-N. Yu, J.-H. Jang, and C.-S. Han, "Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel," Automation in Construction, vol. 16, no. 3, pp. 255-261, 2007.
[19] G. Girmscheid and S. Moser, "Fully automated shotcrete robot for rock support," Computer‐Aided Civil and Infrastructure Engineering, vol. 16, no. 3, pp. 200-215, 2001.
[20] S. Neudecker, C. Bruns, R. Gerbers, J. Heyn, F. Dietrich, K. Dröder, A. Raatz, and H. Kloft, "A new robotic spray technology for generative manufacturing of complex concrete structures without formwork," Procedia Cirp, vol. 43, pp. 333-338, 2016.
[21] X. Lin, D. Song, M. Qin, W. Zhang, X. He, and B. Xie, "An Automatic Tunnel Shotcrete Robot," in 2019 Chinese Automation Congress (CAC), 2019: IEEE, pp. 3858-3863.
[22] X. Wang and X. Su, "Modeling and sliding mode control of the upper arm of a shotcrete robot with hydraulic actuator," in 2007 IEEE International Conference on Integration Technology, 2007: IEEE, pp. 714-718.
[23] N. Hack and H. Kloft, "Shotcrete 3d printing technology for the fabrication of slender fully reinforced freeform concrete elements with high surface quality: a real-scale demonstrator," in RILEM International Conference on Concrete and Digital Fabrication, 2020: Springer, pp. 1128-1137.
[24] N. Melenbrink, J. Werfel, and A. Menges, "On-site autonomous construction robots: Towards unsupervised building," Automation in construction, vol. 119, p. 103312, 2020.
[25] C. Yuan, B. Xiong, X. Li, X. Sang, and Q. Kong, "A novel intelligent inspection robot with deep stereo vision for three-dimensional concrete damage detection and quantification," Structural Health Monitoring, vol. 21, no. 3, pp. 788-802, 2022.
[26] F. Xu, X. Wang, and G. Jiang, "Design and analysis of a wall-climbing robot based on a mechanism utilizing hook-like claws," International Journal of advanced robotic systems, vol. 9, no. 6, p. 261, 2012.
[27] H. H. Aghdam, H. A. Kadir, M. R. Arshad, and M. Zaman, "Localizing pipe inspection robot using visual odometry," in 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), 2014: IEEE, pp. 245-250.
[28] J.-K. Oh, G. Jang, S. Oh, J. H. Lee, B.-J. Yi, Y. S. Moon, J. S. Lee, and Y. Choi, "Bridge inspection robot system with machine vision," Automation in Construction, vol. 18, no. 7, pp. 929-941, 2009.
[29] N. H. Pham and H. M. La, "Design and implementation of an autonomous robot for steel bridge inspection," in 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016: IEEE, pp. 556-562.
[30] A. Kochan, "Robots for automating construction–an abundance of research," Industrial Robot: An International Journal, 2000.
[31] C.-C. Hung, H.-S. Lee, and S. N. Chan, "Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes," Composites Part B: Engineering, vol. 158, pp. 269-278, 2019.
[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2022-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明